OPTIMIZATION OF ROUTE RECOVERY IN MULTIPATH AODV

Charushila Raskar 1, Shoba Krishnan 2

1,2 Department of Electronics and Telecom. Engineering, Mumbai University, Mumbai, (India)

ABSTRACT

Ad-hoc network is a collection of wireless mobile nodes moving in some area without any backbone infrastructure such as access point and the devices connected to it for communication. As the nodes moves randomly in any area, topology is also getting change arbitrarily so the network disconnection occurs frequently. Paper proposes a difference between the existing Ad-hoc On-demand Distance Vector (AODV) protocol, which rely on source node to rebuild path in-order to reach the packet to the destination and Multipath Ad-hoc On-demand Multipath Distance Vector (MAODV) protocol which selects intermediate nodes using path’s accumulation information. MAODV recognizes the multiple paths based on interior-node’s information and stores in core nodes which will be use at the time of route recovery. Proposed algorithm reduces the time required to build the new path and also reduces the number of reset control messages by using the intermediate node information when the network gets disconnected.

Keywords: Multipath, Ad-hoc

I INTRODUCTION

Routing support for mobile hosts is presently being formulated as mobile IP technology when the mobile agent moves from its home network to a foreign (visited) network, the mobile agent tells a home agent on the home network to which foreign agent their packets should be forwarded. Routing protocol for ad-hoc networks can be group according to the way in which nodes obtain routing information and according to the type of information they use to compute preferred paths. In terms of the way in which nodes obtain information, routing protocols have been categorized as on-demand and table-driven. In on-demand routing protocols, nodes maintain path information for only those destinations. Examples of this approach are AODV [2], DSR [3], and TORA [4]. In table-driven routing protocols, each node maintains path information for each known destination in the network and updates its routing-table entries as needed. Examples of table-driven algorithms based on distance vectors are the routing protocols of the DARPA packet radio network [5], DSDV [6], and WRP [6].

II METHODS

2.1 Ad-hoc on-demand distance vector

The Ad-hoc on Demand Distance Vector (AODV) routing protocol builds on the DSDV algorithm. AODV is an improvement on DSDV because it typically minimizes the number of required broadcasts by creating routes on a demand basis, as opposed to maintaining a complete list of routes as in the DSDV algorithm. AODV packet
format is shown in the Figure 2 which tells that what will be the destination as well as source address in order to transfer the packet through the route. AODV classify as a pure on-demand route acquisition system, since nodes that are not on a selected path do not maintain routing information or participate in routing table exchanges. When a source node desires to send a message to some destination node and does not already have a valid route to that destination, it initiates a path discovery process to locate the other node.

![Figure 1 Path in the AODV](image1.png)

Fig. 1 Path in the AODV

<table>
<thead>
<tr>
<th>Type</th>
<th>J</th>
<th>R</th>
<th>G</th>
<th>D</th>
<th>U</th>
<th>Reserved</th>
<th>Hop count</th>
</tr>
</thead>
<tbody>
<tr>
<td>RREQ ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Destination IP Address</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Destination sequence Number</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Originator IP Address</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Originator sequence Number</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2 RREQ Packet Format

It broadcasts a route request (RREQ) packet to its neighbors, which then forward the request to their neighbors, and so on, until either the destination or an intermediate node with a fresh enough routes to the destination is located. Figure 1(a) illustrates the propagation of the broadcast RREQs across the network. AODV utilizes destination sequence numbers to ensure all routes are loop free and contain the most recent route information. The source node includes in the RREQ packet. The RREQ packet format shown in the Figure 2 Intermediate nodes can reply to the RREQ only if they have a route to the destination whose corresponding destination sequence number is greater than or equal to that contained in the RREQ. During the process of forwarding the RREQ, intermediate nodes record in their route tables the address of the neighbor from which the first copy of the broadcast packet is received, thereby establishing a reverse path. If additional copies of the same RREQ are later received, these packets are discarded. Once the RREQ reaches the destination or an intermediate node with a fresh enough route, the destination intermediate node responds by unicasting a route reply (RREP) packet back to the neighbor from which it first received the RREQ(Fig.4). As the RREP is routed back along the reverse path, nodes along this path set up forward route entries in their route tables which point to the node from which the RREP came. These forward route entries indicate the active forward route.
Multiple Route AODV (MRAODV)[7] reduces routing overhead by extending the waiting time of RREPs until detecting all possible routes included by all RREPs. MRAODV mechanism tends to wait for long time to check if there are more available routes including inefficient routes.

2.2 Various extensions of AODV

In Adaptive Backup Routing(ABR) protocols[8], if a link break occurs then primary route is replaced by alternate route by performing a handshake process with its immediate neighbors to repair the broken route which leads to occur routing overhead. Ad-hoc On-demand Multiple route Distance Vector(AOMDV)[12] detects the link-disjoint and multiple loop-free routes due to this many efficient routes can be missed due to the restriction of link-disjoint routes, which leads to consume too much memory with increasing in routing overhead. One drawback with AOMDV is that it deletes links when they seem to be failed. SMORT [10] is another multipath extension to AODV and it finds multiple fail safe routes. A route between source and destination is said to be fail to the primary path if it bypasses at least one intermediate node on primary path nodes as well as links can be common in fail safe path. Routing process concept consists of route discovery, route reply and route maintenance. AODV-BR [11] is an extension to AODV routing protocol. RREQ is flooded into the network in the route discovery phase. Each RREQ packet carries a unique identifier to detect and drop duplicate packets. An intermediate node on receiving a non-duplicate RREQ records the previous hop and the source node information in its route table. RREP is sent back to the source upon reception of first or subsequent RREQs by any intermediate node having route to the destination. AODV-ABR [8] is a modification of AODV-BR which in itself is a modification of AODV. The route discovery cycle is the same as that of AODV-BR except that AODV-BR forms mesh structure by overhearing RREP packets only, while AODV-ABR overhears both data packets and RREP packets to form alternate routes. If a link break occurs then primary route is replaced by alternate route by performing a handshake process with its immediate neighbors to repair the broken route. Multiple Route AODV (MRAODV)[13] reduces routing overhead by extending the waiting time of RREPs until detecting all possible routes included by all RREPs. MRAODV mechanism tends to wait for long time to check if there are more available routes including inefficient routes.

2.3 Protocol concept

Algorithm reduces the packets which carry the control information in a network like RREQ, RRER, RREP packets. It selects the Core nodes to forward the RREQ packets to establish the connection to the destination node. This reduces the additional load on the source node and also saves the lot of time to send the error message to the source node. It means that the Core-node reinitiate the path without knowing to the source node. If link break occur the core node sends the data through the secondary path.

2.3.1Route Discovery Process

AODV drops the packet if it gets the duplicate packets in the network but this algorithm flood the packet instead of dropping it. Before sending the packet to the next node the control packets pass through the node, nodes ID is attached to packets payload. Below Figure 3 shows the modified packet to be send to the next node.
In modified format, RREQ packet stores the information for data transfer route. If link break occur, the network removes the loop by using stored node ID’s information. From this accumulated node information, algorithm selects the CORE-nodes that forward a RREQ packet for multi-path. As shown in Figure 4, two packets are sent at the same time towards a destination node. Those nodes store path in Accumulation PATH variable of RREQ packet. Using the information accumulated in the path of two packets, the destination node D selected node 5 and node 12 as CORE-nodes.

<table>
<thead>
<tr>
<th>Type</th>
<th>J</th>
<th>R</th>
<th>G</th>
<th>D</th>
<th>U</th>
<th>Reserved</th>
<th>Hop count</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RREQ ID</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Destination IP Address</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Destination sequence Number</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Originator IP Address</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Originator sequence Number</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Accumulation Path</td>
</tr>
</tbody>
</table>

Fig. 3 Modified RREQ Packet Format

Fig. 4 Path creations from source to destination

As shown in figure there are multiple path from the source node to the destination node. At the end the multiple paths has found to the destination node having same source node, then it selects the two path with min length among them. Path which is having minimum length among two acts as a primary path and other is secondary path. Reply packet (RREP) is send through primary as well as secondary path to the sender node by unicast.

2.3.2 Route Recovery Process

Below figure 5 shows the route maintenance process. When the link break occurs, AOMDV protocol does the route recovery with the help of control packets. If node where the link breaks occurs it checks the upstream node if upstream node is Core-node it starts the transmission through the secondary path and restarts the data transfer.
If the upstream node is not a Core-node then the control packet is transfer to the Core-node with the error (RRER) message to the core-node. It tells the Core-node about the link breakage. Then Core-Node detects the previous broken link’s information and it selects node from where the secondary path starts and it again restarts the data transfer. So the algorithm does not require flooding the control message to recover the data path so it reduces the route recovery latency. If links break successively, there are no alternate paths between Core-nodes. In figure 6 route recovery process must restart in divided sections by CORE-node A and CORE-node B. Also, there will be CORE-nodes (C, C’) between the CORE-node A and CORE-node B. And there are many CORE-nodes in the section where a link break frequently occurs and the length of the path is close. Therefore, proposed algorithm unlike the AODV, it doesn’t need to flood control messages so reduces the route recovery latency. If a link breaks successively, there are no alternate paths between CORE-nodes.

2.3.3 Pseudo code

Step 1: Route Discovery process

If (RREQ==1)
{
While(search RREQ_ID)
{
Step 2: Route Recovery process

While (check RREQ_ID)
{

Count each node temp=0;

Each i=0 to count
{

if temp <= AP[i] temp=AP[i];

}

Ncu=temp;

} RREP through the primary path.

Step 3: Route Recovery in upstream node

if (Nu == Nco)
{

Data sending through secondary path stored core node.

}

else
{

RRER send to the upstream node; Delete information about broken link; Data sending through secondary path;

}
Figure 7 shows the comparison graph of AODV vs multipath AODV. Graph has interval vs path_establish_time for both AODV and multipath AODV. Graph has different values as No. of packet send in one unit interval and the time require for path establishment between sender and receiver.

Fig. 7 Path establish time AODV vs AOMDV

Multipath AODV with core node require less time to the route request, route reply and route error packet as compare to the AODV protocol. Below figure 8 shows the link recovery process after the link breakage in between the source and destination.

Fig. 8 Path recovery time

The role of Core-Node in multipath AODV is to maintain route on behalf of source node. If link break occurs in between intermediate links, node which is connected to link failure node does not get reply message from next node so the link breakage or error message sends to the upstream node/Core-Node instead of source node. But if it happens with AODV node protocol sends the link failure message to source node only.

As the AODV takes more time to recover the link between the sender and the receiver number of packets dropped are more in the AODV than AOMDV. Below figure 9 shows the packet drop between the AODV and AOMDV protocol.
Fig. 9 Packet Drop

With this AOMDV performs better while doing the link recovery process. After recovery of link failure core node sends the same data from the secondary path which has been store in the beginning of AOMDV route establishment.

IV CONCLUSION

Path in the wireless network could change frequently as the time progress. As the number of nodes increased in the ad-hoc network flow of the data may increase rapidly. Multipath AODV helps to minimize the number of control packets in the network as the Core node i.e. intermediate node helps to provides alternate path to the destination when a link is broken. This will reduce the recovery latency because source node does not need to reinitiate a route discovery process.

V ACKNOWLEDGEMENTS

Work is supported by the Vivekanand Education Society’s Institute of Technology, Mumbai, Work reduces the link recovery time after link breakage between sender and receiver in Wireless ADHOC network

References