International Journal idvance Research In Science And Engineering http://www.ijarse.com
IJARSE, Vol. No.3, Issue No.3, March 2014 -2ASEM8354(E)

COMPARISON BETWEEN SWAP AND DE-DACOTA
MITIGATING XSS

Md. Rashid Hussain,?Abhishek Yadav

'Associate Professor ABESIT GhaziaBBdlech Scholar ABESIT Ghazialfhudia)

ABSTRACT

Through Web people can now share their data, interact online, sencordientyand are able to perform many

tasks with just a single click. But many of them might be unaware ef the prevailling attacks like Xss that may lead to
di vul ging of i nf or ma-tdj hjacking y8eb seasionsnThe expsessiond "s8iEsseriptmg" o0 n
refers to the act of loading the thighrty web application from an unrelated.attack site, in'a manner that executes a
malicious JavaScriptrafted by the attackerfor the targeted domain~(@flectedor nonpersisteniXSS
vulnerability) The other modes of code injectiongiineluding persistent and invlid JavaScript cause some confusion
to newcomers to the field of Information Secdrity. Hence, appropriate,solutiondmust be proposed. So, today through
this a comparison is being made inWweeptwo proposed solutions to prevent a user from being a target of xss. The
two methods being discussed here are SWAR(Secure Web Application Proxy)embi@deautomatic code and

data separation. One of them i.e. SWAP provides nearly complete sedhitéyon the other hand deacota is
incapable in providing securitypto web applicationsiwith dynamic JavaScript. Though in terms of time and
performance ddacota seems to be mueh, better. Now which technique will be best is the question. There exists
somesolutions which provide cliefgide mitigationiwhilessome are capable of providing security at both client as
well as server side(for eg BEEP).

Keywordg Static Analysis Cross Site ScriptingXss Script Ids Javascript Dector.

I INTRODUCTION

The reain of webapplication”has covered a vasta, connectingeople to share theifata, interacwith each other

with the help of web2 @8ites; theycandeliver data to oneanother throughveb. But as the use of web for the data
sharing and other works is irig to zenith, theprevailing attack lik xss andther similarattackstendto bring it

down to nadir. Though web2.0 is capable of providing platfornmuars, hostingmage, richcontent, itneeds to

face a lot ofchallenges whiclsometimes prove tbe incubusfor these welapplicationslt includes hijacking web
sessionsdeveloping sites through phishing .There can be enormous reasons behind the intentions of an attacker,
includes curiosity, destructive,eccentricity and many otheWith the help ofxss sensitiveuser information is

leaked, victim is impersonated to perform the undable actions on web applicatioA report publishedby

231|Page
www.ijarse.com

International Journal idvance Research In Science And Engineering http://www.ijarse.com
IJARSE, Vol. No.3, Issue No.3, March 2014 -2ASEM8354(E)

Symantec in March2007 statdsat, outof 2526vulnerabilitiesthat were documented in 2006,66% of them affected
webapplicationd2]

As this world isprogressingiVeb Application are no longer simpler but has turned itself into more complex
programs includinglavaScripand HTML or commonly known as XML(Xtensible Markup Language).Hence web
applications are becoming neovulnerable to xssn HTML the content of page is data while the code is JavaScript
code. Thefollowing are the HTML tags which could allow a malicious user to inject script code which can be

malicious.
Potentially Dangerous HTML Tafig
1 <applet>,<body>,<embed>,<frame><script>,<html>,,<style><meta>
Thesrc attribute of the #ng> tag can be a source of injection, @s"shown in the following examples.
<imgsrc="javascript:alert(‘hello");">
An attacker can also use thstyde> tag to inject a script bghanging the MIME type'as shown in the following.

<style TYPE="text/javascript">
alert('hello);
</style>
Listingl:Injection of malicious script.

Two types of xssvulnerabilitiesiServer side and client side.The former is caused flgwhet sever side code
while the latter is caused by the flawsyat, client side dddeugh Listingl it could be easily understooow the
attack is caused. Xss leatie Webapplication vulnerabilities i.aVhite Hat Website Security Statistics Ref8it
OWASP Top Ten[4. This vulnerability ' has even madeossi bl e to obtain wuseroés
spreadsheepplication,xeflectinghat'Google itself is not spared from thitack. Manybanking applications tend

to be vulpérable to xss:

Herethetwo, techniques forxss, vulnerabilihavebeen compared: SWAP and-BacotaThe former mitigates xss
attack using reverse proxy while the latter mitigates xss attack via code and data separation.

The reverse praxy i8WAP firstforwards each web respse to the JavaScript detectiocomponenta web browser

that takes cognizance dhe proxy of whether any scripts are contained in inspestadent. Fothis all justifiable
script calls are encoded into unparsable identifiers i.e. scriptHiglsce diference between the valid and indal
code isjustified [8].In de-Dacota prototype the code and data is separated i.e. all inline JavaScript code is converted
into external JavaScrifites. Thisprototype targets binary .Napplications. lbperates atibary level so that it can
analyze systertibraries, thatare available in binary forf8].Once this code and datasisparated, browser would

get notified of this separation and thus browser ensures that no code is executed from thardeth Such

communications and enforcement is supported by the new W3C browser standsedtGecurity Policy(CSP)[6

232|Page
www.ijarse.com

0C

International Journal idvance Research In Science And Engineering http://www.ijarse.com
IJARSE, Vol. No.3, Issue No.3, March 2014 -2ASEM8354(E)

I RELATED WORK

2.1Server Side Mitigation

Server side mitigation aims at reducing the vulnerability of web applications towards attacks. Hemcdé
validating input and output ,encoding output and avoidance of the HTML tags which are vulnerable to this
attackApplicationlevel firewall [5] located on a security gateway between server and client and applies all security
relevant checks anttansformations. Sangt2] make use of static and dynamic analyisisfirst it identifies the

cases where the sanitization is not complete by encountering the way invhich an application processes the inpu
values and then the code is modified to sanitizeatbplication inputs and when it is executed on malicious inputs it

tries to encounter the faulty sanitizatiprocedures. Scripbuard [/] assumes‘a set of gorrect'sanitizerd inserts

them to match the br ows eamé st Crpag saritimaion wretionsautornaticBlllE K[1 0]

analyzable for preciseness and correctness.

Restricting scripts is also a server sitkfense XSS-Guard [L4] dynamicallyidentifies thescripts that are to be
executed and if any other scriptisought into itscognizance its discarded. Dynamievaluation ofJavaScripand
html results in approximately 45% performancegoverhe@dsle Isolation [L1, 13,14 based applications limits
DOM access for particular scripts.

Data Flow Analysis is another method for netisng xss. The xss defenses using data flow analysis a1,
21, 23].

2.2 Client-Side Mitigation

Client Side modifications are required:to discourage the vulnerability of web applications towaltsexsstes the
involvement of enddisers. Thee t y p£€ “of msol uti ons has to be installed
becomes nexus’ for, usefhere exists many splution to thialnerability, for eg.Noxes[20] workingas an
application levelfirewallyplug-in is a\client side proxywhich makes the user known about all the divulged
information generated dynamically through the static liekisactedby this proxy . It needs to have usspecific

rules’or eonfiguration and requires the’presence or interference of user on encountespigi@sievent. Leakage

of sensitive informatiorby the spoiling of input data in browseould also be identified through a cliesitle
approach 18]. A'verystrict cliemsidemechanism, capabtef detecting JavaScript is proposgtich has a browser

T erbedded script auditing’component and an ID that go through all the audit logs and then makes a comparison
with the known signatiires of malicious behavior or attacks. Though, it is capable of detecting not only xss attacks
but also other similar attacks[22]ogt et al.p5] also provides a solution from this problem by tracking the rlease of
sensitive data due to this attack.

But a prerequisite for this mitigation is that it requihes/ingthe userglextrous so that they remain aware of the
security measurethat are to be needed for their applicatidience,it is clear that this type of mitigation is
restricted or confined to a limited number of users and thumust be tried that a serv&de solution must be

focused.

233|Page
www.ijarse.com

(0]

International Journal okdvance Research In Science And Engineering http://www.ijarse.com
IJARSE, Vol. No.3, Issue No.3, March 2014 -2ASEM8354(E)

2.3 Hybrid-Mitigation

There exits somesolutions whiclrequires both the user involvement as well as server side involvement.
BEEP[24](BrowsefEnforced Embedded Policies) propose to use a modified browser that hooks all browser

execution attempts and checks them against a policy pbigiéhe server.

I COMPARISON

3.1 Working

SWAPI8] : It operates on a reverse proxy .Web browser is positioned ona reverséefare/a sekver and thus
user involverant is avoided. It completesiprocessn three stps.First, all validJavaScriptallsare encoded

to syntactically invalid identifiers(script IDs).Second,eachuested web” page is loaded hnowser attached to
reverse proxy,and scripts trying to get executed are tracked. Thus if anysmalicious scriptis encountered then it must
not have been encoded loeéhand. Third, after verifyingll the Scripts are ‘decedto restoré the original cdég.

) "

I r\-\-\-\-‘-\-\- _—
[request | r —
client rproxy
9 ,<""' T T | web server
el
Y.-'NI lJE—:’?
i
|s-tester
- database

FIGUREL. Scheme Of SWAP Setup[8]

Each valid JavaScript call ds_identified and then encoded into identifiers resulting in the modifirfatieab
application. A JavaScript detection component isdeel to decide whether tteeript other than valid script
isinjected or not. This,.eemponent is nothing but a modified web browser. Here in this approach Firefox is chosen
since it is a open souf@@owser. The rproxy in FIGUREL is the reverse proxy that forwards each HTML response
to JavaScript detectiocomponent foranalysis. Hence, it becomes easy to assume from wher did that script arrive

i.e. through reflection (xss) or through Web applicatidatabasestored xss)[8]

de-Dacotd9]: Here code and data is separatedallethe inline JavaScripts are transformed to external JavaScript
files. It targets to Asp.net binary filek1r an Html document the code is all the script parfirbt phaseHtml output

of web page is approximated for the code written in Asparedt form After getting thiscode compiledt is to

234|Page
www.ijarse.com

International Journal idvance Research In Science And Engineering http://www.ijarse.com
IJARSE, Vol. No.3, Issue No.3, March 2014 -2ASEM8354(E)

determine what is being written at a TextWriter.Writefunctions[9]. Hence -pwminpoint analysis algorithm
presented in [26] isnodified towork on .Net Byte Coddnstead of CThis point to point analysi€omputes the set

of strings that alias with the parameter of TextWriter.write. If all the strings in this alias set are constant strings , the
output at the TextWriter.Write Wibe defined at the conjunction of all possible constant strings. Otherwise, the
output is statically undecidable . Contilbw graph is built to determine the order of TextWriter.Write method
calls. In second phase , approximation graph is used tacexafl possible inline JavaScripn third phase
application is rewritten so that all the inline JavaScript is removed and saved in external JavaScript files.To
support caching on client side, the name of JavaScript file is derived from its’Combena wsyptographic hash of

the JavaScript content.

3.2 Performance

SWAP: Higher latency is experienced by the client when requesting contentifrom a séver protected with
SWAP when compared to server without this protection. The latency gets Increaseta@oereasons

first when a request is to be processed it has to pass through reversamatdaikys/processing time gets
increasedand second JavaScript detectionge@mponent has to render each page before delivering it to
client. Herce page load timalsogets incread8].

de-Dacota There is no appreciable difference in pagegloadingstimes with and without thef dse

Dacota. Since with dBacota transformation the page size is reduced and thus the request is processed in
approximately same time asiwas tbrevious. As all the scripts now gets turneéxternal files the size

of page gets reducedut with use of,ddacota the processing time gets sometimes increased as
extraction of inling’JavaScripts takes & 'lot of tii@ie”

IV RESULT

As bothéthe technues belong to serverside methods then it becomes difficult to analyse that which one must be
used. In'terms of performandeDacota’seem to be much better than SWAP. In SWAP additional time is required
to convert all valid script$o_script identifiersand then it is compared by JavaScript detection component thus
increasing the response or‘page load time to three times. While in cas®ataa the time is required only to
analyse the inline javascript so that they can be removed, thus leadingdtored page size and thus page load

time gets approximately remains same.

SWAPI8] : does not suit better for high performance web service. Here the web browser acts as a JavaScript
detection componeftut each web br owser 6s odrwdliclavwaScrpadifferoamd tlhugit wh a
becomes difficult to choose best JavaScript detection component. Firefox can provide high level protection but users

using |IE or any other browser are not fully protected. Thus a high level of protectiomictegst

235|Page
www.ijarse.com

—

International Journal idvance Research In Science And Engineering http://www.ijarse.com
IJARSE, Vol. No.3, Issue No.3, March 2014 -2ASEM8354(E)

de-Dacotd9]:_is incapable to provide protection in case of dynamic inline JavaScript completely. It gets affected if
the webapplication containsome dynamic features and these features determine the Html output. The Asp.net
applications targeteldy [9] contained no dynamic features. There is no formal proof forghisotype to be correct

but the assumptions it made if violated will not produce correct output[9].

V CONCLUSION

As there is nothing which is hundred percefiicient and so is thease with the solutions proposed for this attack.
ThroughXss attackhe victim is impersonated and sensitive information is leakeeDaseta is a novel approach

that brings closer to this goal of mitigating xss , by making use of ststicdanalysietoatigally separate code and
data.Hence, it becomes a way to step ahead of combating against xss. But onfthe contrary SWAP is able to
differentiate between malicious and benigiavaScript calls and thus providestnear about full seeurity from xss
attacks It is still required to produce an optimal solution todprevent asweb application from being a target of xss

attack.

REFERENCES

[1]JHow to Prevent Cross Site Scripting In ASP-Net. http:/imsdn.micraesoft.censlhrary/ff649310.aspx

[2] Symantec. Symantdnternet security‘threat report, march2007

[3]WhiteHat Security. Website Security Statistics Report.http://www.whitehatsec.com/resource/stats.html|,2008
[4]Phishmarket :: dénttp://basportal.€om/baseportal/phishmarket/at,2007
[5]D.Scott and R.sharp . Abstracting AgplicatienélWeb security. 111" World Wide Web Conference,2002.

[6]Stamm , S.“Sterne, B. , And Markham, G. Reining in the web with content security policy. éegirays of the
International World Wide Web Conference(WWW)(2010).

[7ISAXENA »P. , MOLNARY, \D. , 'AND LIVSHITS , B.SCRIPT GUARD: Automatic ConteSéensitive
Sanitization far Largescale Legacy Web Applications In Proceedings ofAkidM Conference on Compmutand
Communications‘Security (CCS)(2011).

[BJWURZINGER , PLATER, LUDL , KIRDA , KRUEGAL: SWAP : mitigating xss attacks using reverse proxy

[9IDOUPE , CUI, JAKUBOWSKI , PEINADO , KRUGEL , VIGNA : dBecota:Toward Preventing Servade

XSS via automaticade and data separation.

[L0]JHOOIMEI , P. , LIVSHITS , B. , MOLNAR , D. , SAXENA , P. , AND VEANAS,M. Fast And Precise
Sanitizer Analysis with BEK. IProceedings of the USENIX Security Symposium(USENIX)(2011)

236|Page
www.ijarse.com

http://baseportal.com/baseportal/phishmarket/at,2007

International Journal idvance Research In Science And Engineering http://www.ijarse.com
IJARSE, Vol. No.3, Issue No.3, March 2014 -2ASEM8354(E)

[11]JAKHAWE, D. , SAXENA , P., AND SONG, D PrevilegeSeperation in HTML5 Applications. Pmoceedings
of the USENIX Security Symposium(USENIX)(2011)

[12]BALZAROTTI,D. , Cova, M., FELMETSGER, V., JOVANOVIC , N., KIRDA , E. , KRUGEL , C., AND
VIGNA, G.Saner: Composite Static and Dynamic AnalyBs Validate Sanitization in Web Applications. In

proceedngs of the IEEE Symposium on security and Privacy.

[13]JATHANASOPOULOS , E., PAPPAS , V. ,AND MARKATOS ,E. P. Celagection Attacks in Browsers
Supporting Policies.Rroceedings of the Workshop Web2.0 Security and Privacy(W2&)09).

[14]BISHT, P. , And VENKATAKRISHNAN, V . XSSGUARD: Precise Dynamic Rrevention of Cross
Scripting Attacks . In Proceedings Of the Conference on Detegtion of Intrusions and Malware, and Vulnerability
AssessmentDIMVA)(Paris,France,2008).

[15]JOHNS , M. , AND BEYERLEIN , C. SMASK : Preventing Injection,_attacks“in Web Applications by
Approximating Automatic Data/Code Seperatioim .Proceedings of the ACM Symposium on Applied Computing
(SACJ2007).

[L6]JJOVANOVIC , N. ,KRUEGEL,C. , AND,, KIRDA | E! Precise Alias"Analysis for Static Detection of Web
Application Vulnerablitiesln Proceedings Of‘thesWorkshepyon Programming Languages and Analysis for Securit
(PLAS)2006) .

[17]LIVSHITS , B., AND EREINGSSON , U. Ustn“Web_Application Construction Frameworks to Protect
Against Code Injection Attacks\. IRroceedings Of the Workshop on Programming Languages and Analysis for
Security(PLASR007).

[18] P. Vogt, F. Nentwich, N. Jovanovic, C. Kruegel, E. Kirda, and G. &i@ross site scripting prevention with
dynamic data tainting“and, static analysis, 14th Annual Networkand Distributed System Security Symposium
(NDSS)2007.

[19]Nguyentuong,»A., Guarfieriy S., Greene, D., and Evans, D. Automatically Hardening Weicasipps Using

Precise Tainting.In‘Proceedings of the IFIP International Information Security Conference (2005).

[20] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic.Noxes: A clgdé¢ solution for mitigating crossite
scripting attacks. 121st ACMSymposium on Applied Computing(SAZ)06

[21] Livshits, V. B., and Lam, M. S. Finding Security Vulnerabilities in Java Applications with Static Analysis. In
Proceedings of the USENIZecurity SymposiurflUSENIX) (2005).

237|Page
www.ijarse.com

