
International Journal of Advance Research In Science And Engineering         http://www.ijarse.com  

IJARSE, Vol. No.3, Issue No.3, March 2014                                                  ISSN-2319-8354(E)  

 

231 | P a g e 

www.ijarse.com 

COMPARISON BETWEEN SWAP AND DE-DACOTA        

MITIGATING XSS  

1
Md. Rashid Hussain, 

2
Abhishek Yadav 

1
Associate Professor ABESIT Ghaziabad,

2
B.Tech Scholar ABESIT Ghaziabad(India)  

 

ABSTRACT 

Through Web people can now share their data, interact online, send rich content and are able to perform many 

tasks with just a single click. But many of them might be unaware of the prevailing attacks like xss that may lead to 

divulging of information, stealing userôs session-Id, hijacking web sessions. The expression "cross-site scripting"  

refers to the act of loading the third-party web application from an unrelated attack site, in a manner that executes a 

malicious JavaScript crafted  by the attacker for  the targeted domain (a reflected or non-persistent XSS 

vulnerability). The  other modes of code injection, including persistent and invlid JavaScript cause some confusion 

to newcomers to the field of Information Security. Hence, appropriate solution must be proposed. So,  today through 

this a comparison is being made in between two proposed solutions to prevent a user from being a target of xss. The 

two methods being discussed here are SWAP(Secure Web Application Proxy) and de-Dacota-automatic code and 

data separation. One of them i.e. SWAP provides nearly complete security while on the other hand de-Dacota is 

incapable in providing security to web applications with dynamic JavaScript. Though in terms of time and 

performance de-Dacota seems to be much better. Now which technique will be best is the question. There exists 

some solutions which provide client-side mitigation while some are capable of providing security at both client as 

well as server side(for eg BEEP).  

Keywords: Static Analysis, Cross Site Scripting, Xss, Script Ids, Javascript Dector.  

 

I INTRODUCTION  

The realm of web application has covered a vast area, connecting people to share their data, interact with each other 

with the help of web2.0 sites; they can deliver data to one another through web. But as the use of web for the data 

sharing and other works is rising to zenith, the prevailing attack like xss and other similar attacks tend to bring it 

down to nadir. Though web2.0 is capable of providing platform for users, hosting image, rich content, it needs to 

face a lot of challenges which sometimes prove to be incubus for these web applications. It includes hijacking web 

sessions, developing sites through phishing .There can be enormous reasons behind the intentions of an attacker, 

includes curiosity, destructive, eccentricity and many other. With the help of xss sensitive user information is 

leaked, victim is impersonated to perform the undesirable actions on web application. A report published by 



International Journal of Advance Research In Science And Engineering         http://www.ijarse.com  

IJARSE, Vol. No.3, Issue No.3, March 2014                                                  ISSN-2319-8354(E)  

 

232 | P a g e 

www.ijarse.com 

Symantec in March2007 states that, out of 2526 vulnerabilities that were documented in 2006,66% of them affected 

web applications.[2] 

As this world is progressing,Web Application are no longer simpler but has turned itself into more complex 

programs including JavaScript and HTML or commonly known as XML(Xtensible Markup Language).Hence  web 

applications are becoming more vulnerable to xss. In HTML the content of page is data while the code is JavaScript 

code. The following are the HTML tags which could allow a malicious  user to inject script code which can be 

malicious. 

Potentially Dangerous HTML Tags[1] 

¶ <applet>,<body>,<embed>,<frame>,<script>,<html>,<img>,<style>,<meta> 

The src attribute of the <img> tag can be a source of injection, as shown in the following examples. 

<imgsrc="javascript:alert('hello');"> 

An attacker can also use the <style> tag to inject a script by changing the MIME type as shown in the following. 

<style TYPE="text/javascript"> 

alert('hello'); 

</style> 

                     Listing1:Injection of malicious script.  

 

Two types of xssvulnerabilities:Server side and client side.The former is caused by the flaws at sever side code 

while the latter is caused by the flaws at  client side code.Through Listing1 it could be easily understood how the 

attack  is caused. Xss leads the Web application vulnerabilities i.e. White Hat Website Security Statistics Report [3], 

OWASP Top Ten[4]. This vulnerability has even made possible to obtain userôs cookie in Googleôs online 

spreadsheet application, reflecting that Google itself is not spared from this attack. Many banking applications tend 

to be vulnerable to xss. 

Here the two techniques for xss vulnerability have been compared: SWAP and de-Dacota.The former mitigates xss 

attack using reverse proxy while the latter mitigates xss attack via code and data separation. 

The reverse proxy in SWAP first forwards each web response to the JavaScript detection component, a web browser 

that takes cognizance of  the proxy of whether any scripts are contained in inspected element. For this all justifiable 

script calls are encoded into unparsable identifiers i.e. script ids. Hence difference between the valid and invalid 

code is justified [8].In de-Dacota prototype the code and data is separated i.e. all inline JavaScript code is converted 

into external JavaScript files. This prototype targets binary .Net applications. It operates at binary level so that it can 

analyze system libraries, that are available in binary form[9].Once this code and data is separated, a browser would 

get notified of this separation and thus browser ensures that no code is executed from the data channel. Such 

communications and enforcement is supported by the new W3C browser standard Content Security Policy(CSP)[6].  

 



International Journal of Advance Research In Science And Engineering         http://www.ijarse.com  

IJARSE, Vol. No.3, Issue No.3, March 2014                                                  ISSN-2319-8354(E)  

 

233 | P a g e 

www.ijarse.com 

II RELATED WORK  

 
2.1Server Side Mitigation 

 
Server side mitigation aims at reducing the vulnerability of web applications towards attacks. Hence,it can be 

validating input and output ,encoding output and avoidance of the HTML tags which are vulnerable to this 

attack.Application-level firewall [5] located on a security gateway between server and client and applies all security 

relevant checks and transformations. Saner[12] make use of static and dynamic analysis i.e.first it identifies the 

cases where the sanitization is  not complete by encountering the way in which an application processes the input 

values and then the code is modified to sanitize the application inputs and when it is executed on malicious inputs  it 

tries to encounter the faulty sanitization procedures. Script-Guard [7]  assumes a set of  correct sanitizers and inserts 

them to match the browserôs parsing context.BEK[10]  aims at creating sanitization functions automatically 

analyzable for preciseness and correctness. 

Restricting scripts is also a server side defense. XSS-Guard [14] dynamically identifies the scripts that are to be 

executed and if any other script is brought into its cognizance it is discarded. Dynamic evaluation of JavaScript and 

html results in approximately 45% performance overheads. Code Isolation [11, 13,17]  based applications limits 

DOM access for particular scripts. 

Data Flow Analysis is another method for mitigating xss. The xss defenses using data flow analysis  are[15, 16,19, 

21, 23]. 

 

2.2 Client-Side Mitigation 

 
Client Side modifications are required to discourage the vulnerability of web applications towards xss. It requires the 

involvement of end users. These type of solutions has to be installed on each userôs workstation and thus sometimes 

becomes nexus  for  user. There exists many solution to this vulnerability, for eg.Noxes[20] working as an 

application level firewall plug-in is a client side proxy which makes the user known about all the divulged 

information generated dynamically through the static links extracted by this proxy  . It needs to have user-specific 

rules or configuration and requires the presence or interference of user on encountering a suspicious event. Leakage 

of sensitive information by the spoiling of input data in browser could also be identified through a client-side 

approach [18]. A very strict client-side mechanism, capable of detecting JavaScript is proposed which has a browser 

ïembedded script auditing component and an ID that go through all the audit logs and then makes a comparison 

with the known signatures of malicious behavior or attacks. Though, it is capable of detecting not only xss attacks 

but also other similar attacks[22]. Vogt et al.[25] also provides a solution from this problem by tracking the rlease of 

sensitive data due to this attack. 

But a prerequisite for this mitigation is that it requires having the users dextrous so that they remain aware of the 

security measures that are to be needed for their applications. Hence, it is clear that this type of mitigation is 

restricted or confined to a limited number of users and thus it must be tried that a server-side solution must be 

focused. 



International Journal of Advance Research In Science And Engineering         http://www.ijarse.com  

IJARSE, Vol. No.3, Issue No.3, March 2014                                                  ISSN-2319-8354(E)  

 

234 | P a g e 

www.ijarse.com 

 

2.3 Hybrid-Mitigation  

 
There exists some solutions which requires both the user involvement as well as server side involvement. 

BEEP[24](Browser-Enforced Embedded Policies) propose to use a modified browser that hooks all browser 

execution attempts and checks them against a policy provided by the server. 

 

III COMPARISON  

 
3.1 Working 

 

SWAP[8] : It operates on a reverse proxy .Web browser is positioned on a reverse proxy before a server and thus 

user involvement is avoided. It completes its process in three steps.First, all valid JavaScript calls are encoded 

to syntactically invalid identifiers(script IDs).Second,each requested web page is loaded in browser attached to 

reverse proxy,and scripts trying to get executed  are tracked. Thus if any malicious script is encountered then it must 

not have been encoded beforehand. Third, after verifying, all the scripts are decoded to restore the original code[8]. 

 

 
FIGURE1. Scheme Of SWAP Setup[8] 

 

Each valid JavaScript call is identified and then encoded into identifiers resulting in the modification of web 

application. A JavaScript detection component is needed to decide whether the script other than valid script  

isinjected or not. This component is nothing but a modified web browser. Here in this approach Firefox is chosen 

since it is a open source browser. The rproxy in FIGURE1 is the reverse proxy that forwards each HTML response 

to JavaScript detection component for analysis. Hence, it becomes easy to assume from wher did that script arrive 

i.e. through reflection (xss) or through Web applications database (stored xss)[8]. 
 

de-Dacota[9]: Here code and data is separated i.e. all the inline JavaScripts are transformed to external JavaScript 

files. It targets to Asp.net binary files. In an Html document the code is all the script part. In first phase, Html output 

of web page is approximated for the code written in Asp.net web form. After getting this code compiled it is to 



International Journal of Advance Research In Science And Engineering         http://www.ijarse.com  

IJARSE, Vol. No.3, Issue No.3, March 2014                                                  ISSN-2319-8354(E)  

 

235 | P a g e 

www.ijarse.com 

determine what is being written at a TextWriter.Writefunctions[9]. Hence  point-to ïpoint analysis algorithm  

presented in [26] is modified to work on .Net Byte Code  instead of C. This point to point analysis  computes the set 

of strings that alias with the parameter of TextWriter.write. If all the strings in this alias set are constant strings , the 

output at the TextWriter.Write will be defined at the conjunction of all possible constant strings. Otherwise, the 

output is statically undecidable . Control-Flow graph is built to determine the order of  TextWriter.Write method 

calls. In second phase , approximation graph is used to extract all possible inline JavaScript. In third phase 

application is re-written  so that all the inline JavaScript  is removed and saved in external JavaScript files.To 

support caching on client side, the name of JavaScript file is derived from its content using a cryptographic hash of 

the JavaScript content. 

3.2 Performance 

SWAP: Higher latency is experienced by the client when requesting  content from a sever  protected with 

SWAP when compared to server without this protection. The latency gets increase due to two reasons-

first when a request is to be processed it has to pass through reverse proxy and thus processing time gets 

increased and second JavaScript detection component has to render each page before delivering it to 

client. Hence page load time also gets increase[8]. 

de-Dacota: There is no appreciable difference in page loading times with and without the use of de-

Dacota. Since with de-Dacota transformation the page size is reduced and thus the request is processed in 

approximately same time as was the previous. As all the scripts now gets turned to external files the size 

of page gets reduced. But with use of de-Dacota the processing time gets sometimes increased as 

extraction of inline JavaScripts takes a lot of time.[9]. 

IV RESULT 

As both the techniques belong to server side methods then it becomes difficult to analyse that which one must be 

used. In terms of performance de-Dacota seem to be much better than SWAP. In SWAP additional time is required 

to convert all valid scripts to script identifiers and then it is compared by JavaScript detection component thus 

increasing the response or page load time to three times. While in case of de-Dacota the time is required only to 

analyse the inline javascript so that they can be removed, thus leading to reduction of page size and thus page load 

time gets approximately remains same. 

SWAP[8] : does not suit better for high performance web service. Here the web browser acts as a JavaScript 

detection component but each web browserôs determination of what is valid or invalid JavaScript differs and thus it 

becomes difficult to choose best JavaScript detection component. Firefox can provide high level protection but users 

using  IE or any other browser  are not fully protected. Thus a high level of protection is restricted. 



International Journal of Advance Research In Science And Engineering         http://www.ijarse.com  

IJARSE, Vol. No.3, Issue No.3, March 2014                                                  ISSN-2319-8354(E)  

 

236 | P a g e 

www.ijarse.com 

de-Dacota[9]: is incapable to provide protection in case of dynamic inline JavaScript completely. It gets affected if 

the web application contains some dynamic features and these features determine the Html output. The Asp.net 

applications targeted by [9] contained no dynamic features. There is no formal proof for this  prototype to be correct 

but the assumptions it made if violated will not produce correct output[9]. 

V CONCLUSION 

As there is nothing which is hundred percent efficient and so is the case with the solutions proposed for this attack.  

Through Xss attack the victim is impersonated and sensitive information is leaked . de-Dacota is a novel approach 

that brings closer to this goal of mitigating xss , by making use of ststic analysis to automatically separate code and 

data. Hence, it becomes a way to step ahead of combating against xss. But on the contrary SWAP is able to 

differentiate between malicious and benign  JavaScript calls and thus provides near about  full security from xss 

attacks. It is still required to produce an optimal solution to prevent a web application from being a target of xss 

attack.  

REFERENCES 

[1]How to Prevent Cross Site Scripting In ASP.Net. http://msdn.microsoft.com/en-us/library/ff649310.aspx 

[2] Symantec. Symantec internet security threat report, march2007 

 

[3]WhiteHat  Security. Website Security Statistics Report.http://www.whitehatsec.com/resource/stats.html,2008 

[4]Phishmarket ::   de. http://baseportal.com/baseportal/phishmarket/at,2007 

[5]D.Scott  and  R. sharp . Abstracting  Application-level Web security. In 11
th
 World Wide Web Conference,2002. 

[6]Stamm , S. Sterne, B. , And Markham, G. Reining in the web with content security policy. In proceedings of the 

International World Wide Web Conference(WWW)(2010). 

[7]SAXENA ,P. , MOLNAR , D. , AND LIVSHITS , B.SCRIPT GUARD: Automatic Context-Sensitive 

Sanitization for Large-Scale  Legacy Web Applications In Proceedings of the ACM Conference on Computer and 

Communications Security (CCS)(2011). 

[8]WURZINGER , PLATER, LUDL , KIRDA , KRUEGAL: SWAP : mitigating xss attacks using reverse proxy 

[9]DOUPE , CUI, JAKUBOWSKI , PEINADO , KRUGEL , VIGNA : de-Decota:Toward Preventing Server-side 

xss via automatic code and data separation. 

[10]HOOIMEI , P. , LIVSHITS , B. , MOLNAR , D.  , SAXENA , P. , AND VEANAS,M. Fast And Precise 

Sanitizer Analysis with BEK. In Proceedings of the USENIX Security Symposium(USENIX)(2011) 

http://baseportal.com/baseportal/phishmarket/at,2007


International Journal of Advance Research In Science And Engineering         http://www.ijarse.com  

IJARSE, Vol. No.3, Issue No.3, March 2014                                                  ISSN-2319-8354(E)  

 

237 | P a g e 

www.ijarse.com 

[11]AKHAWE, D. , SAXENA , P. , AND SONG, D . PrevilegeSeperation in HTML5 Applications. In Proceedings 

of the USENIX Security Symposium(USENIX)(2011) 

[12]BALZAROTTI,D. , Cova , M. , FELMETSGER , V. , JOVANOVIC , N. , KIRDA , E. , KRUGEL , C. , AND 

VIGNA, G.Saner: Composite Static and Dynamic Analysis To Validate Sanitization in Web Applications. In 

proceedngs of the IEEE Symposium on security and Privacy. 

[13]ATHANASOPOULOS  ,  E. , PAPPAS , V. ,AND MARKATOS ,E. P. Code-Injection Attacks in Browsers 

Supporting Policies.InProceedings of the Workshop on Web2.0 Security and Privacy(W2sp)(2009).  

[14]BISHT, P.  ,  And  VENKATAKRISHNAN, V .  XSS-GUARD: Precise Dynamic Prevention of Cross-

Scripting Attacks . In Proceedings Of the Conference on Detection of Intrusions and Malware and Vulnerability 

Assessment (DIMVA)(Paris,France,2008). 

[15]JOHNS , M. , AND BEYERLEIN , C. SMASK : Preventing Injection attacks in Web Applications by 

Approximating Automatic Data/Code Seperation . In Proceedings of the ACM Symposium on Applied Computing 

(SAC)(2007).  

[16]JOVANOVIC , N. ,KRUEGEL,C. , AND  KIRDA , E. Precise Alias Analysis for Static Detection of Web 

Application Vulnerablities. In Proceedings Of the Workshop on Programming Languages and Analysis for Securit 

(PLAS)(2006) . 

[17]LIVSHITS  ,  B. , AND ERLINGSSON , U. Using  Web Application Construction Frameworks to Protect 

Against Code Injection Attacks . In Proceedings Of the Workshop on Programming Languages and Analysis for 

Security(PLAS)(2007). 

[18] P. Vogt, F. Nentwich, N. Jovanovic, C. Kruegel, E. Kirda, and G. Vigna. Cross site scripting prevention with 

dynamic data tainting and static analysis. In 14th Annual Networkand Distributed System Security Symposium 

(NDSS), 2007. 

 

[19]Nguyen-tuong, A., Guarnieri, S., Greene, D., and Evans, D. Automatically Hardening Web Applications Using 

Precise Tainting.In Proceedings of the IFIP International Information Security Conference (2005). 

 

[20] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic.Noxes: A client-side solution for mitigating cross-site 

scripting attacks.  In 21st ACM Symposium on Applied Computing(SAC), 2006 

 

[21] Livshits, V. B., and Lam, M. S. Finding Security Vulnerabilities in Java Applications with Static   Analysis. In   

Proceedings of the USENIX Security Symposium (USENIX) (2005). 




