
International Journal of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.3, Special Issue (01), September 2014 ISSN-2319-8354(E)

82 | P a g e

LINKED IMPLEMENTATION OF LIST

1
Sonu Khandwal,

2
Mayank Saini

1,2
Department of Information Technology,

Dronacharya College of Engineering, Gurgaon (India)

ABSTRACT

This paper address about the link list, its types and operations on link list like creation, traversing, insertion,

deletion, searching a node in link list.

I INTRODUCTION

A link list is an ordered collection of finite homogeneous data elements called nodes where the linear order is

maintained by means of links or pointers that is each pointer is divided into two parts: first contain the info of the

element and the second part, called the link field contains the address of the next node in the list.The principal

benefit of a linked list over a conventional array is that the list elements can easily be inserted or removed without

reallocation or reorganization of the entire structure because the data items need not be stored contiguously in

memory or on disk. Linked lists allow insertion and removal of nodes at any point in the list, and can do so with a

constant number of operations if the link previous to the link being added or removed is maintained during list

traversal.

We will be discussing about two type of link list:

 Singly link list.

 Doubly link list

1.1 Singly Link List

International Journal of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.3, Special Issue (01), September 2014 ISSN-2319-8354(E)

83 | P a g e

1.2 Doubly linked list

Main article: Doubly linked list

In a doubly linked list, each node contains, besides the next-node link, a second link field pointing to

the previous node in the sequence. The two links may be called forward(s) and backwards,

or next and prev (previous).

A doubly linked list whose nodes contain three fields: an integer value, the link forward to the next node, and the link

backward to the previous node

A technique known as XOR-linking allows a doubly linked list to be implemented using a single link field in each

node. However, this technique requires the ability to do bit operations on addresses, and therefore may not be

available in some high-level languages.

1.3 Multiply linked list

In a multiply linked list, each node contains two or more link fields, each field being used to connect the same set of

data records in a different order (e.g., by name, by department, by date of birth, etc.). While doubly linked lists can

be seen as special cases of multiply linked list, the fact that the two orders are opposite to each other leads to simpler

and more efficient algorithms, so they are usually treated as a separate case.

1.4 Circular list

In the last node of a list, the link field often contains a null reference, a special value used to indicate the lack of

further nodes. A less common convention is to make it point to the first node of the list; in that case the list is said to

be 'circular' or 'circularly linked'; otherwise it is said to be 'open' or 'linear'.

A circular linked list

In the case of a circular doubly linked list, the only change that occurs is that the end, or "tail", of the said list is

linked back to the front, or "head", of the list and vice versa.

http://en.wikipedia.org/wiki/XOR_linked_list

International Journal of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.3, Special Issue (01), September 2014 ISSN-2319-8354(E)

84 | P a g e

1.5 Sentinel Nodes

Main article: Sentinel node

In some implementations, an extra sentinel or dummy node may be added before the first data record and/or after the

last one. This convention simplifies and accelerates some list-handling algorithms, by ensuring that all links can be

safely dereference and that every list (even one that contains no data elements) always has a "first" and "last" node.

1.6 Empty lists

An empty list is a list that contains no data records. This is usually the same as saying that it has zero nodes. If

sentinel nodes are being used, the list is usually said to be empty when it has only sentinel nodes.

1.7 Hash linking

The link fields need not be physically part of the nodes. If the data records are stored in an array and referenced by

their indices, the link field may be stored in a separate array with the same indices as the data records

1.8 .Linearly linked lists

Singly linked lists

Our node data structure will have two fields. We also keep a variable first Node which always points to the first

node in the list, or is null for an empty list.

 record Node {

 data; // The data being stored in the node

 Node next // A reference to the next node, null for last node

 }

 record List

 {

 Node firstNode // points to first node of list; null for empty list

 }

Traversal of a singly linked list is simple, beginning at the first node and following each next link until we come to

the end:

 node := list.firstNode

 while node not null

 (do something with node.data)

 node := node.next

http://en.wikipedia.org/wiki/Reference_(computer_science)

International Journal of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.3, Special Issue (01), September 2014 ISSN-2319-8354(E)

85 | P a g e

The following code inserts a node after an existing node in a singly linked list. The diagram shows how it works.

Inserting a node before an existing one cannot be done directly; instead, one must keep track of the previous node

and insert a node after it

.

 function

insertAfter(Node node, Node newNode) // insert newNode after node

 newNode.next := node.next

 node.next := newNode

Inserting at the beginning of the list requires a separate function. This requires updating firstNode.

 function insertBeginning(List list, Node newNode) // insert node before current first node

 newNode.next := list.firstNode

 list.firstNode := newNode

Similarly, we have functions for removing the node after a given node, and for removing a node from the beginning

of the list. The diagram demonstrates the former. To find and remove a particular node, one must again keep track of

the previous element.

 function removeAfter(Node node) // remove node past this one

 obsoleteNode := node.next

 node.next := node.next.next

 destroy obsoleteNode

 function removeBeginning(List list) // remove first node

 obsoleteNode := list.firstNode

International Journal of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.3, Special Issue (01), September 2014 ISSN-2319-8354(E)

86 | P a g e

 list.firstNode := list.firstNode.next // point past deleted node

 destroy obsoleteNode

1.9 Circularly linked list

In a circularly linked list, all nodes are linked in a continuous circle, without using null. For lists with a front and a

back (such as a queue) one stores a reference to the last node in the list. The next node after the last node is the first

node. Elements can be added to the back of the list and removed from the front in constant time.

Circularly linked lists can be either singly or doubly linked.

Both types of circularly linked lists benefit from the ability to traverse the full list beginning at any given node. This

often allows us to avoid storing first Node and last Node, although if the list may be empty we need a special

representation for the empty list, such as a last Node variable which points to some node in the list or is null if it's

empty; we use such a last Node here. This representation significantly simplifies adding and removing nodes with a

non-empty list, but empty lists are then a special case.

II ALGORITHMS

Assuming that some Node is some node in a non-empty circular singly linked list, this code iterates through that list

starting with some Node

 function iterate(someNode)

 if someNode ≠ null

 node := someNode

 do

 do something with node.value

 node := node.next

 while node ≠ someNode

Notice that the test "while node ≠ someNode" must be at the end of the loop. If the test was moved to the beginning

of the loop, the procedure would fail whenever the list had only one node.

This function inserts a node "newNode" into a circular linked list after a given node "node". If "node" is null, it

assumes that the list is empty.

 function insertAfter(Node node, Node newNode)

 if node = null

 newNode.next := newNode

International Journal of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.3, Special Issue (01), September 2014 ISSN-2319-8354(E)

87 | P a g e

 else

 newNode.next := node.next

 node.next := newNode

REFERENCE

 1) www.google.co.in

 2) http://en.wikipedia.org/wiki/Linked_list

http://www.google.co.in/
http://en.wikipedia.org/wiki/Linked_list

