DESIGN OF FLEXIBLE PAVEMENT: A CASE STUDY OF ONGC TO VENUS, BHOYAN RATHOD

Bhrugu Kotak¹, Parth Zala², Abhijitsinh Parmar³, Dhaval M Patel⁴, Mittal Patel⁵

¹Lecturer, Department of Civil Engineering, SVBIT, GTU, (India)
²Site Engineer, Asopalav Construction, Gujarat, (India)
³I/C Head, Department of Civil Engineering, SVBIT, GTU, (India)
⁴,⁵Assistant Professor, Department of Civil Engineering, SVBIT, GTU, (India)

ABSTRACT

In the present time, to provide a better road network is necessary, but it is not available at some places. There are some places where the traffic is higher or enough but road network is not available for it. Research area is from ONGC to Venus collage which is used by Daily traffic such as Collage bus, four wheeler, two wheelers, village people etc. The daily traffic is required a proper road but because of lack of maintenance the road becomes damaged and pavement deterioration is taking place like potholes, rutting, disintegration and surface defects which are studied in this research. Now it is need to be repaired with a proper design. The aim of this research is to provide a road design from ONGC TO VENUS ICT which should be safe and economical. Traffic data collection, soil data collection and soil testing has been carried out.

Keywords: Road Design, Flexible Pavement, Site Investigation

I INTRODUCTION

1.1 Project Area Profile

Total Length of Road – 3.1 km.

- Starting Point Address:-
 ONGC WSS Opp. IFFCO kalol unit,
 Ahmedabad – Mehsana Highway, Saij, Kolol.

- Ending Point Address :-
 Venus International Collage of technology,
 Bhoyan Rathod, Gandhinagar – 382420

Starting Point: - At ONGC (0 m)

- Latitude - 23°12’ 58.13” N
- Longitude - 72°31’ 12.55” E

Ending Point: - At Venus Collage (3.1 km)

- Latitude - 23° 14’ 5.58” N
- Longitude - 72° 32’ 31.42” E
1.2 Pavement Deterioration

The problems relating to pavement maintenance are still complex due to the dynamic nature of road pavements where elements of the pavement are constantly changing, being added or removed. Pavements are complex structures involving many variables, such as materials, construction methods, loads, environment, maintenance, and economics.

1.2.1 Types of deterioration

II FIELD WORK

2.1 Soil Sample Collection

Soil sample is collected at the 500m interval of the project area.
2.2 Traffic Data Collection

Traffic data are collected for 3 days because traffic intensity is very low.

2.2.1 PCU Calculation

- For making capacity computation under mixed traffic condition, the different types of vehicles should be converted to a common unit known as ‘passenger car unit’ by multiplying of their number with relevant equivalency factors, there are meant for use in open sections in plain terrain away from intersections. As per IRC-64-1976 “Geometric design standards for rural highways.”
- In excel sheet calculated PCU value of traffic volume.

<table>
<thead>
<tr>
<th>Total PCU Traffic</th>
<th>Bus</th>
<th>Standard City Bus</th>
<th>Other Mof Bus</th>
<th>Mini Bus</th>
<th>Cars/Jeep Van</th>
<th>Two Wheelers</th>
<th>Auto Rickshaws</th>
<th>Trucks</th>
<th>M/C V</th>
<th>Cycle Rickshaw</th>
<th>Cycle Carts</th>
<th>Cycle Rickshaw</th>
<th>TOT AL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>0</td>
<td>18</td>
<td>42</td>
<td>15</td>
<td>57</td>
<td>300</td>
<td>49</td>
<td>21</td>
<td>6</td>
<td>0</td>
<td>12</td>
<td>24</td>
<td>544</td>
</tr>
<tr>
<td>Tuesday</td>
<td>0</td>
<td>18</td>
<td>48</td>
<td>24</td>
<td>77</td>
<td>284.5</td>
<td>42</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>10</td>
<td>16</td>
<td>1.5</td>
</tr>
<tr>
<td>Wednesday</td>
<td>0</td>
<td>12</td>
<td>42</td>
<td>18</td>
<td>56</td>
<td>272.5</td>
<td>42</td>
<td>9</td>
<td>6</td>
<td>0</td>
<td>8.5</td>
<td>16</td>
<td>1.5</td>
</tr>
<tr>
<td>Average</td>
<td>0</td>
<td>16</td>
<td>44</td>
<td>19</td>
<td>63.33</td>
<td>285.6</td>
<td>44.33</td>
<td>10.16</td>
<td>18.66</td>
<td>67</td>
<td>67</td>
<td>18.66</td>
<td>167</td>
</tr>
</tbody>
</table>

Table 1. Average Daily Traffic
Therefore, PCU/day = 520.167

III. LABORATORY WORK

3.1 Free Swell Index Test
- Free Swell Index is the increase in volume of a soil, without any external constraints, on submergence in water.
- Performed As per IS: 2720 (Part 40) 1977.

Reporting of Results

3.2 Liquid Limit Test
- The liquid limit of a soil is the moisture content, expressed as a percentage of the weight of the oven-dried soil, at the boundary between the liquid and plastic states of consistency.
- Reference: : IS:2720 (Part 5)-198
- CALCULATION OF LIQUID LIMIT:- At point 1
<table>
<thead>
<tr>
<th>Cane No.</th>
<th>9</th>
<th>11</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass Of Empty Cane</td>
<td>9.35</td>
<td>9.39</td>
<td>9.26</td>
</tr>
<tr>
<td>Mass Of Empty Cane + moist soil</td>
<td>26.74</td>
<td>26.36</td>
<td>24.38</td>
</tr>
<tr>
<td>Mass Of Empty Cane + Dry Soil</td>
<td>23.37</td>
<td>23.32</td>
<td>21.47</td>
</tr>
<tr>
<td>Mass of Soil Solid (Ms)</td>
<td>14.02</td>
<td>13.39</td>
<td>12.21</td>
</tr>
<tr>
<td>Mass of pore Water (Mw)</td>
<td>3.37</td>
<td>3.04</td>
<td>2.91</td>
</tr>
<tr>
<td>W = Water content</td>
<td>24.03</td>
<td>21.82</td>
<td>23.83</td>
</tr>
<tr>
<td>No. of Blows</td>
<td>27</td>
<td>23</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 2: Reading of liquid limit test

- Water content at 25 blows is 22.95
- Liquid limit at point 1 is 22.95

3.3 Plastic Limit Test

The plastic limit is determined by rolling out a thread of the fine portion of a soil on a flat, non-porous surface.

3.4 Reporting of Results

The plastic limit should be determined for at least three portions of the soil passing through 425\(\mu\)m IS Sieve. The average water content to the nearest whole number should be reported.

At point 1:-

<table>
<thead>
<tr>
<th>Cane No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass Of Empty Cane</td>
<td>8.18</td>
<td>8.25</td>
<td>8.14</td>
</tr>
<tr>
<td>Mass Of Empty Cane + moist soil</td>
<td>21.57</td>
<td>22.17</td>
<td>20.89</td>
</tr>
<tr>
<td>Mass Of Empty Cane</td>
<td>19.64</td>
<td>20.19</td>
<td>19.08</td>
</tr>
</tbody>
</table>
Table 3: Reading of plastic limit

<table>
<thead>
<tr>
<th></th>
<th>Series 1</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Soil Mass of Soil Solid (Ms)</td>
<td>11.46</td>
<td>11.94</td>
<td>10.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass of pore Water (Mw)</td>
<td>1.93</td>
<td>1.98</td>
<td>1.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W = Water content</td>
<td>16.84</td>
<td>16.58</td>
<td>16.54</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chart 4: Plastic limit at different point

3.5 California Bearing Ratio

At point : 1

Chart 5: CBR test

Chart 6. CBR value at different point
3.6 Layers in Flexible Pavement

Fig 7. Design of pavement

Summary

<table>
<thead>
<tr>
<th>Point</th>
<th>FSI %</th>
<th>Liquid Limit</th>
<th>Plastic Limit</th>
<th>Plasticity Index</th>
<th>CBRvalue</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.21</td>
<td>22.95</td>
<td>16.65</td>
<td>6.3</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>2.1</td>
<td>20.66</td>
<td>17.02</td>
<td>3.64</td>
<td>10.8</td>
</tr>
<tr>
<td>3</td>
<td>3.5</td>
<td>22</td>
<td>16</td>
<td>6</td>
<td>16.6</td>
</tr>
<tr>
<td>4</td>
<td>4.21</td>
<td>21.33</td>
<td>16.09</td>
<td>5.24</td>
<td>17.4</td>
</tr>
<tr>
<td>5</td>
<td>5.26</td>
<td>23.66</td>
<td>16.24</td>
<td>7.42</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>3.15</td>
<td>20.33</td>
<td>15.89</td>
<td>4.44</td>
<td>15.8</td>
</tr>
</tbody>
</table>

Table 4

IV. CONCLUSION

1. We observed traffic pattern which promotes us to design Flexible pavement.
2. Actual road is weaker presently because of poor maintenance & heavy rainfall in monsoon season.
3. Our soil testing record shows all the FSI results are below 50%, does mean soil does not require any special treatment.
4. Our soil group is Silt and very fine sand ; rock flour ; fine sand with low plasticity (ML) , which is suitable for subgrade for flexible pavement.
5. Cumulative number of standard axles to be catered for in the design
 N = 13.07 msa
6. Peak Hours of traffic = 8:30 TO 11:30 AM & 2:30 TO 5:30 PM
7. We obtain Pavement thickness = 669.05mm
 - Total DBM = 79.05 mm
 - Granular Base = 250 mm
 - Granular Sub-base = 300 mm
BC (Bituminous Coarse) = 40mm

REFERENCES

2. IRC:37-2001: “Guidelines for the design of flexible pavement (second revision)”
6. IS:2720(part 40)-1987: “Determination of free swell index test” (second revision)
7. IRC:64-1990: “Guidelines for capacity of roads in rural areas” (first revision)
8. MORTH Specification: “Specifications for road and bridge works”
9. SP-20: “Manual on route location, design, construction and maintenance of rural roads”