
International Journal of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.4, Special Issue (02), February 2015 ISSN-2319-8354(E)

513 | P a g e

A SURVEY OF SIMULATION TOOLS FOR

PERVASIVE APPLICATIONS

R. Vivadha
1
, J. Uma Maheswari

2
,

1, 2
Assistant Professor, Department Of CSE, Rajiv Gandhi College of Engg & Tech., (India)

ABSTRACT

Pervasive computing needs a poise of computing, design, and business constraints to be considered all through

the design process. Realizing this creation involves a level of design in mixture of different fields that is not

present in current pervasive design tools. Besides the progress of the key technologies for pervasive computing,

the design of application itself has materialized as a remarkable research area. In spite of much growth,

developing a pervasive computing application ruins a challenge because of in need of conceptual frameworks

and supporting tools. In this paper, a survey has been conducted with different tools that support the integration

of analysis and the design process which helps to identify design considerations. The investigation is done as of

which tool involve both designers and engineers to take part in the design process. Evaluation is also performed

for each tool with the conventional metrics of pervasive design tools. These evaluations afford imminent to key

metrics and allow tool designers to recognize the requirements of their intentional spectators.

Keywords: Pervasive System, Context-Reorganization, Citycompiler, Diasuite, Sketchify.

I. INTRODUCTION

Pervasive Computing also known as ambient, physical, embedded, environmental or ubiquitous computing was

first introduced by technology prophet Mark Weiser in the year 1991. He visualized a world of entirely coupled

devices with economical wireless networks where information is available everywhere. A world in which

computers and information technologies become invisible, and impossible to differentiate from everyday life:

„anytime, anywhere and always on‟ concept has been came into use. Today, a family is encircled by hundreds of

„invisible‟ devices in the machines around them. Likewise, in a pervasive computing environment, computers

and information processing turn out to be normal, and pierce into every object in our day by day lives. Until

lately the „ubiquity‟ was rarely heard, but nowadays, it has promptly come to mean just about anything having

to do with global connectivity. Consequently, information technology perspectives are no longer appreciated so

much for the immersiveness they propose as for how tangential they emerge to be, and in this way dropping

information overload. In 2004, McCullough renowned that architecture has obtained a digital layer, which

occupies the design of organizations, services and communications and it looks as if that both architecture and

interaction design mutually can help to compile the required structure for a improved assimilation.
[5]

 The same

as Edwards et al. depicted, the focus should be more on the „value for end-users‟ than on the „core technical

workability‟. This target conveys new challenges to the design and evaluation of pervasive applications

International Journal of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.4, Special Issue (02), February 2015 ISSN-2319-8354(E)

514 | P a g e

As a design needs to determine both the technical and users‟ prompt features to maintain the acceptable user

skills, the developers have to build the overall scenarios, so as to recognize the day by day practices of their

users. Conversely, the day by day conditions are constantly varying, owing to the diverse perspective of use and

the settings for communication, which causes the challenging prophecy in producing a set-up. For example it is

extremely tricky to envisage how users will respond when designing an interactive service. Presently, the

technical features for constructing pervasive applications are noticeable, due to the existing sensing, data

processing and context-recognizing technologies. However for researchers, there is still in need for the criteria

to design and estimate the features of the application itself. The purpose of features in a design today mainly

depends upon the designers‟ practices and perceptions or on the particular styles supported by the particular

infrastructure systems. It can also be evaluated that a good quality design of pervasive applications can quickly

fix on to which elements should be limited within a given application and assess how well those features will

put in value for users to tackle their requirements. It aids the designers in speeding up an iterative development

process and in accepting the full intricacy of applications by setting the exact reasons in each design phase. In

such cases, constructing a prototype is a core means, which permits the designers to reveal, assess or test a

developing design with the negligible effort.
[8]

To appropriately implement pervasive systems, the designers must design them to tackle human desires and

concerns. Design needs a considerate and harmonizing of appropriate constraints to find a suitable solution.

Adding up to this, the vast scale of pervasive computing means this design will occur across multiple domains

together with fashion, industrial design, architecture, urban planning.
[7]

Today, numerous tools for pervasive applications are present to satisfy the miscellaneous necessities devolved

into the entire design process: from sketching the idea early with a low-fidelity prototype to deploying a high

fidelity prototype and testing it in a practical environment. Compared to those more established application

domains in pervasive computing, e.g. the middleware for prevailing over the heterogeneity via uniform

interfaces, design tools are still at an early stage.
[8]

International Journal of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.4, Special Issue (02), February 2015 ISSN-2319-8354(E)

515 | P a g e

II. KEY REQUIREMENTS FOR PERVASIVE COMPUTING APPLICATIONS

Moreover to involve proficiency on underlying technologies, mounting a pervasive computing application also

entails domain-specific architectural knowledge to gather information pertinent for the application, develop it,

and execute actions. Some of the key requirements for developing pervasive computing applications are

reviewed below:
[3]

2.1 Abstracting Over Heterogeneity

Pervasive computing applications interrelate with entities whose heterogeneity has a tendency to penetrate in the

application code, messing it with low-level details.
[3]

This condition need to raise the level of abstraction at

which entities are raised, to factor entity variations out of the application code, and to protect it from distributed

systems dependencies and communication protocol details.

2.2 Architecturing an Application

Theoretically, pervasive computing applications gather context information, process it, and carry out actions.

Software development methodologies such as model driven engineering are also useful to design pervasive

computing applications.
 [3]

 A prominent example is PervML which relies on the general-purpose modeling

notations of UML to produce particular programming support. However, such approaches do not afford a

conceptual framework to direct the design.

2.3 Leveraging Area-Specific Knowledge

Since the pervasive computing domain comprises an increasing number of areas, information about each area

wants to be shared and made reusable to make easy the growth of applications. Reusability is required at two

levels.
 [3]

 First, it is looked-for the entity level because applications in a given area frequently share the same

classes of entities. Second, reusability is looked-for the application level to facilitate the developer to act in

response to new requirements by using obtainable context computations.

2.4 Covering the Application Development Life-Cycle

Existing general-purpose design frameworks are standard and do not wholly sustain the development life-cycle

of pervasive computing applications. To cover this life-cycle, a design framework explicit to the pervasive

computing domain is required. This domain-specific design framework would get better yield and assist

progress.
 [3]

 To make this design framework effectual, the conformance between the requirement and the

implementation must be definite. After the application is implemented, tools should aid for all characteristic of

its consumption. Maintenance and evolution are important matter for any software system. They are even more

significant in the pervasive computing domain where new entities may be organized or detached at any time and

where users may have varying needs. These maintenance and evolution phases should be supported by

pervasive tools.

2.5 Simulation of the Environment

The use of a pervasive computing application involves abundant equipments to be obtained, tested, configured,

and installed. In addition, some scenarios are hard to test because of the situations involved.
[3]

To overcome this

operation barrier, tools should be made available to the developer to test pervasive computing applications in a

computer-generated environment.

International Journal of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.4, Special Issue (02), February 2015 ISSN-2319-8354(E)

516 | P a g e

III. PROPERTIES OF PERVASIVE TOOLS

An overview is made by categorizing the pervasive design tools by its properties which are discussed below:
[7]

3.1 Multiple Representations

A key obscurity in design is the language or representation used to articulate a design.
[3]

 Often interactive

products are produced using a textual programming language, which is well-known to the engineers, but

unknown to the designers. Having multiple, and probably concurrent, representations of a design defeats this

problems by letting all members of a design team to take part in the design of an application and have a view

that is appropriate for them.

3.2 User Defined Events

Pervasive applications depend greatly on sensor data collected from the physical world. These physical events

can be as easy as the state of a switch, or they can be more difficult events such as the classification of an

activity.
[7]

 Apart from the event in difficulty, blending sensor data into significant information is a tricky task.

For easy events, thresholds can be set on sensor data, but more difficult events must be examined with a

machine learning algorithms. Several tools have developed methods to assist in fusing events from complex

sensor data.

3.3 Knowledge Support

Including sensing and computing brings in a new material into the design process that is unknown to non-

computing authority.
[7]

 Dow et al. prompts this category by conversing how specialized designers necessitate

information about current and imminent technologies to notify their design. Furthermore, when performing

collaborative design, all parties must recognize how the basic technology behaves.

3.3 Testing and Device Support

Depending on the size of a pervasive system it may not be probable to have all devices or services there during

design.
[7]

 As well, the system will have to be tested using real or generated actions.

3.4 Integration with Current Practice

At last, tools are examined that challenge to integrate current design practice into the design of pervasive

applications.
[7]

 This guideline articulates to the heart of design and tries to use existing design practices to

produce interactive computing elements. This approach continues designers within the normal dominion of

design, permitting comfort and quick iteration.

IV. SURVEY OF DESIGN TOOLS

In this section we present a survey of design tools for pervasive computing.
[7]

 In Section III we summarized the

properties by which to evaluate the design tools.

4.1 Diasuite

DiaSuite is a tool suite which covers the development life cycle of a pervasive computing system. This tool suite

consists of a domain-specific design language, a compiler for the language that generates a Java programming

framework, an editor to identify simulation scenarios, and a 2D-renderer to imitate pervasive computing

International Journal of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.4, Special Issue (02), February 2015 ISSN-2319-8354(E)

517 | P a g e

applications. This tool uses a software design approach to make the development process. DiaSuite presents a

language, DiaSpec, devoted to architecturing pervasive computing systems.
[1]

 DiaSpec lets an area authority to

define categorization by asserting the necessary entities of the system. DiaSpec also offers to declare the

architecture of the system in the form of context and controller components. A simulation editor and 2D-

renderer are also part of DiaSuite to imitate the resulting pervasive computing application.

4.2 Sketchify

Sketchify is a tool for sketching user interfaces. It gives designers the liberty to operate interactive materials by

uniting elements of traditional freehand sketching with functional extension and end-user programming tools,

such as spreadsheets and scripting.
[6]

 This tool has a number of features potentially helpful for sketching of

interactive systems, as well as support for looking at complex technologies in an easy way, multiplicity and

reuse of existing environments. Some of the benefits of using Sketchify tools are investigate the possibilities and

limitations of technologies, mixture of components, extensibility and domain independence, reuse of existing

environments, diversity of development styles and avoiding proprietary lock-in, promoting more efficient

collaboration between designers and engineers.

4.3 Modkit

Modkit is a tool that makes it possible for learners and knowledgeable programmers /designers to fetch tangibles

to life by contributing graphical command blocks stimulated by the Scratch programming environment. Modkit

as a means for designing systems that entails sensing, actuation, programming, embedded design, and crafting.

Participants will look for Modkit programming by using Crimp Cards easy-to-assemble kits of hardware

components.
[3]

 It has as a feature found and manufactured materials into interactive projects by combining them

in unpredicted ways. It interprets opinion from different types of sensors into light, motion, or sound. It expands

Modkit activities for future designers from all backgrounds. It expands Modkit to improved support certain

applications or user groups.

4.4 Inspirational Bits

Inspirational bits as a way to turn out to be more well-known with the design material in HCI, the digital

material. The inspirational bits are described as rapid and filthy but fully working systems in both hardware and

software constructed with the aim of revealing one or several of the dynamic properties of a digital material. It

can also be used as one of the preliminary steps in a design process, making them alike to a technology-driven

design process.
[10]

 These inspirational bits should be rapid to build. Whereas building the first bit in a material

may take longer time, nearly all of the digital materials are very flexible and from our experience the second and

third bit will take much fewer times to build. By this, we also believe the overall amount of time it takes to build

interactive systems in fact will be shorter, in that we will keep away from fighting our material and instead

functioning with it functioning out the design concept.

4.5 City Com Piler

CityCompiler is an integrated environment for the iteration-based development of spatial interactive systems.
[9]

It envisages interactive systems in a virtual 3D space by combining the Processing source code and the 3D

model of the real space, designed with Google SketchUp. Hybrid prototyping would be useful not only for

organize a system into the real world but also for designing a system with a new concept.

International Journal of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.4, Special Issue (02), February 2015 ISSN-2319-8354(E)

518 | P a g e

Tool

name

Multiple

Representations

User defined

events

Knowle

dge

support

Testing

and device

support

Integration with current

practice

Visual

and

textual

repres

entatio

ns

States

and

code

Tangi

ble

Demo

nstrati

on

Infrastruct

ure/API

Emulation

and

simulation

Sketching

interactio

n

Field

observations

and

storyboard

Diasuite      

Sketchify     

Modkit   

Inspiratio

nal bits
 

CityCom

piler
    

d.note      

I*Catch   

ESPranto

SDK
   

Xtel  

Makeit   

Table 1: Comparison of Different Simulation Tools

4.6 d.note

d.note is a revision tool for user interfaces articulated as control flow diagrams. d.note initiates a command set

for altering and interpreting both look and performance of user interfaces; it also describes execution semantics

so proposed changes can be tested instantly. With d.note, users can set up alternatives for manifestation and

application logic.
[2]

 d.note signifies the alternatives by duplicating the original state and visually summarizing

both original and alternative. d.note was implemented as an extension to d.tools.

4.7 i*CATch

i*CATch wearable computing framework, was developed particularly for children and beginners to the field.
[6]

The i*CATch framework is based upon a bus-based architecture, and is further scalable than the existing

alternatives. It comprises of a set of plug-and-play components, a construction platform with a homogeneous

interface, and an easy-to-use hybrid text-graphical integrated development environment. The i*CATch

construction kit was intended for the two reasons of sustaining creativity and make possible standardization in

wearable computing.

International Journal of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.4, Special Issue (02), February 2015 ISSN-2319-8354(E)

519 | P a g e

4.8 ESPranto SDK

The ESPranto SDK is a part of the Edutainment Sensor Platform (ESP) which supports the growth of

sensor/actuator based applications, most particularly in the domains of educational toys, games and lighting.
[11]

ESPranto SDK is a toolkit that provides beginner programmers to build up simple applications, non-technical

domain experts to build up professional content, and technical experts to extend complex building blocks for the

other users to include in their applications. The SDK supports the end user's progression from trainee to expert

programmer. The preclusion of runtime errors is a patent benefit of the SDK. To trim down development time

and costs, the SDK must allow all users to develop applications with no or slight help from a software engineer.

The SDK must permit users to switch effortlessly to a higher level of programming, i.e. without having to adjust

their attitude. The SDK must be adaptable, in that it is not essential to produce a new tool for each hardware

grouping.

4.9 XTel

XTel encompasses three tools: Moxa, Talktic and Entity Collaborator. The „moxa‟ Micro Control Unit (MCU)

board connects to sensors and actuators and is competent of short-distance wireless communications; the

„Talktic‟ programming/runtime environment for the MCU board that holds a JavaScript parser, compiler, VM

and library; and the „Entity Collaborator‟ P2P network library that is capable of managing continuous

information such as video and audio in addition to the discrete information from sensors.
[12]

 The utilization of

these tools allows both developers and designers to rapidly and effortlessly generate ubiquitous contents. „XTel‟

is a progress support environment that facilitates the proficient making of these ubiquitous contents. The main

drawback is that the consumers who are not familiar with programming cannot use it, because it is not easy to

build up visual expression such as Processing.

4.10 MAKEIT

The MAKEIT framework an acronym for „Mobile Applications Kit Embedding Interaction Times‟ is used to

make functional, hi-fi prototypes for mobile devices following sophisticated interaction techniques. It simply

produce and modify applications while at the same time provides support in keeping proposed end user

interaction times low.
[9]

An integrated development environment is used for hi-fi prototyping of mobile phone

applications for producing a code framework for the ultimate implementation. A primary model based on state

graphs confirms parts of the application logic and perceives faults in the navigational structure and propose

alternatives. An integrated model is estimated for task completion times early on the design without calling for

organizing a prototype on the actual target hardware platform.

V. RELATED WORK

The design of tools for pervasive computing mainly focuses on the ability and forms. Another consideration for

the design of tools is based on how these tools are active in the design process life cycle. The design process life

cycle is structured, linear cyclic and iterative. The key property of design tool is its flexibility. This paper mainly

focuses on the properties needed for a tool that have various perspectives such as multiple representations,

knowledge support etc., Tools that are used for designing must have the attribute of knowledge support so that

the user can understand sensing technologies without implementation. The tools must allow for the expression

of different ideas and also must support for different domains.

International Journal of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.4, Special Issue (02), February 2015 ISSN-2319-8354(E)

520 | P a g e

ESPranto SDK attempts to introduce beginners to program. However, domain specific tools such as iCATCH

deals with wearable‟s and location based applications. When using multiple representations, the issues are the

amount of linkage or coupling between the two representations. Tools such as DiaSuite, Sketchify, ESPranto

SDK, Modkit supports visual and textual representations, state and code, Tangibles. These tools provides

graphical user interface and make the user to generate the code efficiently. DiaSuite and Modkit are used as

simulating tools. Simulation allows for a richer design experience that can test features such as user interaction

and network performance estimation.

VI. CHALLENGES

6.1 Design Representation

While one of the attributes in the multiple representation of a single design, the issues in the determination of

which representation is to use. The two parts in the multiple representations are visual and textual

representation. Comparing these two representations, textual programming provides explicit control and

conditional events which are more difficult to describe in a visual language where as visual representation is

easier for beginner programmers and can more easily express continuous behaviors.

6.2 Simulation Environment:

A simulator for pervasive environment needs to serve three roles in the design process. They are as follows: (1)

simulating the input space of an application, including the explicit (e.g., mouse or keyboard events) and implicit

input (e.g., location sensed input when user moves); (2) simulating the logical control flow that jumps between

sensors, servers, handhelds (such as PDA) and any other kinds of networking appliances; and (3) simulating the

output space of an application, which means to visualize the environment effects caused by the application

behaviors.

6.3 Understanding Context Awareness

Designers who are already familiar with the language can now build context-aware applications. However, the

drawback is that the delivered context is not the desired information or is not suited for a particular application.

In such case, the context recognition algorithms will need to be re-evaluated, which may cause major difficulty.

Recent work has been conducted to provide end-users intelligibility in context aware systems (Lim and Dey,

2010) such that they can realize why certain actions were and were not taken. A similar intelligibility approach

is required to allow design teams to understand the behavior of recognition algorithms, and allow the parameters

of the algorithm to be exposed and modified.

VII. CONCLUSION

In this paper, we have done a survey of the current studies in designing and evaluating pervasive applications.

We have listed some of the key requirements to design a pervasive computing application and also some

properties of pervasive tools. We have also summarized the need for design of pervasive computing systems and

performed a survey of some tools.

International Journal of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.4, Special Issue (02), February 2015 ISSN-2319-8354(E)

521 | P a g e

REFERENCE

[1] Benjamin Bertrana, Julien Bruneaua, Damien Cassoua, Nicolas Loriantb, Emilie Ballanda, Charles

Consela, “DiaSuite: a Tool Suite To Develop Sense/Compute/Control Applications”, May 2012.

[2] Björn Hartmann, Sean Follmer, Antonio Ricciardi, Timothy Cardenas, Scott R. Klemmer, “d.note:

Revising User Interfaces Through Change Tracking, Annotations, and Alternatives”, ACM Transactions,

April 2010.

[3] Damien Cassou, Julien Bruneau, Charles Consel, Emilie Balland, “Towards A Tool-based Development

Methodology for Pervasive Computing Applications”, March 2012.

[4] Edward Baafi, Amon Millner, “A Toolkit for Tinkering with Tangibles & Connecting Communities”,

ACM Transactions, Jan 2011.

[5] A. Fatah gen. Schieck, A. Penn, V. Kostakos, E. O‟Neill1, T. Kindberg, D. Stanton Fraser, T. Jones,

“Design Tools for Pervasive Computing in Urban Environments”, DDSS 2006.

[6] Grace Ngai, Stephen C.F. Chan, Vincent T.Y. Ng, Joey C.Y. Cheung, Sam S.S. Choy, Winnie W.Y. Lau

and Jason T.P. Tse, “i*CATch: A Scalable, Plug-n-Play Wearable Computing Framework for Novices and

Children”, ACM Transactions, April 2010.

[7] Jason B. Forsyth, Thomas L. Martin, “Tools for interdisciplinary design of pervasive computing”,

International Journal of Pervasive Computing and Communications, Vol. 8 Iss: 2 pp. 112 – 132.

[8] Lei Tang, Zhiwen Yu, Xingshe Zhou, Hanbo Wang, Christian Becker, “Supporting rapid design and

evaluation of pervasive applications: challenges and solutions”, Springer 2011.

[9] Paul Holleis and Albrecht Schmidt, “MAKEIT: Integrate User Interaction Times in the Design Process of

Mobile Applications”, Springer 2008, LNCS 5013, pp. 56–74.

[10] Petra Sundström, Alex S. Taylor, Katja Grufberg, Niklas Wirström, Jordi Solsona Belenguer, Marcus

Lundén, “Inspirational Bits Towards a Shared Understanding of the Digital Material”, ACM Transactions,

May 2011.

[11] Robert van Herk and Janneke Verhaegh, Willem Fontijn, “ESPranto SDK: an Adaptive Programming

Environment for Tangible Applications”, ACM Transactions, April 2009.

[12] Satoru Tokuhisa, Takaaki Ishizawa, Yoshimasa Niwa, Kenji Kasuya, Atsuro Ueki, Sho Hashimoto,

Kazuhiko Koriyama and Masa Inakage, “xtel: A Development Environment to Support Rapid Prototyping

of “Ubiquitous Content””, 2009.

[13] Yasuto Nakanishi, Koji Sekiguchi, Takuro Ohmori, Soh kitahara, and Daisuke Akatsuka, “Hybrid

prototyping by using virtual and miniature simulation for designing spatial interactive information

systems”, 2011.

[14] Zeljko Obrenovic and Jean-Bernard Martens, “Sketching Interactive Systems with Sketchify”, ACM

Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

