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ABSTRACT 

Joshi N. E. and Meshram M. C. derived the equations describing the dynamics of the kinetic energy spectrum 

density function and the magnetic energy spectrum density function  on using the Lewis–Kraichnan  space–time 

version of the Hopf functional formalism and the multiple-scale-cumulant expansion method for their 

investigation of Magnetohydrodynamic turbulence . Meshram M.C. and Sahu K. have written these equations in 

dimensionless form with respect to a representative wavenumber k0 and a representative value of the energy 

spectrum E0 and  then integrated these equations numerically. The statistical quantities which were not included 

there (namely skewness, enstropy and Taylor’s micro-scale of both the velocity field and the magnetic field for 

the representative value of Reynolds number R=20 and R=1600) are evaluated in the present work. We also 

discover the laws governing these statistical quantities. Further, we discuss the merits and scope of the present 

closure scheme for studying similar types of turbulent flows. 
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I INTRODUCTION 

Turbulence is a ubiquitous phenomenon. Turbulent fluid flows are experienced in daily life. When the fluid is 

electrically conducting, the turbulent motions are accompanied by magnetic field fluctuations and give rise to 

magnetohydrodynamic turbulence. G.K. Batchelor[1] and S. Chandrasekhar[2,3,4] have shown that the 

phenomenological theory of turbulence in magnetohydrodynamics can be developed to same extent as the 

corresponding theories in ordinary hydrodynamic turbulence developed by Taylor[5], Von Karman and 

Howarth[6], Robertson[7], Kolmogoroff[8], Batchelor[1] and Heisenberg[9]. Hence, concepts and techniques 

that have evolved in fully developed hydrodynamical turbulence can be extended to other strongly non-linear 

problems.  Functional calculus for the theory of hydrodynamic turbulence was first introduced by E Hopf[10]. 

K. Goto[11] extended this theory to the magnetohydrodynamic turbulence. R.M. Lewis and R.H. Kraichnan[12] 

gave the space-time functional formalism of Hopf equation. N.E.Joshi and S.V. Krishna[13] translated this 

functional formalism for magnetohydrodynamic turbulence and obtained two equations for characteristic 

functional of the joint probability distribution of the velocity and magnetic fields. G.Ahmadi[14] offered 

approximate methods for Burger’s model of hydrodynamic turbulence based on series expansion of the natural 

logarithm of characteristic functional. N.E. Joshi and M.C. Meshram[15]  extended Ahmadi’s version to 
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magnetohydrodynamic turbulence and obtained a closed set of cumulant equations in real space using zero-

fourth-order-cumulant approximation. N.N. Bogoliubov[16] originated a method of multiple time scale 

expansion. W.M.P Malfliet[17] was first to apply this method of multiple time scales to Burgers hydrodynamic 

turbulence. T. Tatsumi, S. Kida and J. Mizushima[18] applied multiple-scale-cumulant-expansion method to an 

incompressible isotropic turbulence and obtained positive definite energy spectrum at all Reynolds numbers. 

N.E. Joshi and M.C. Meshram[15] have raised the domain to space-time functional which indeed is essential in 

order to extend this concept to hydromagnetic turbulence.  

In section 2 a close set of equations for the energy spectrum functions for MHD turbulence in dimensionless 

form are considered from M.C.Meshram and K.Sahu[19].  The equations for energy spectrum functions are 

integrated numerically and  the statistical quantities describing the MHD turbulence such as the energy transfer 

function, energy dissipation function, enstrophy , Taylor's micro-scale and the skewness are evaluated from the 

numerical values of energy spectrum function of velocity field and magnetic field and a detail analysis of these 

quantities is presented in section 3. In section 4 we write the summary and discuss the merit of results obtained 

which is followed by the scope of the method for conducting further research. 

II EQUATIONS FOR THE ENERGY SPECTRUM FUNCTIONS IN DIMENSIONLESS 

FORM 

M.C. Meshram and K.Sahu[19] obtained the following equations describing the dynamics of the kinetic 

energy spectrum density function and the magnetic energy spectrum density function in dimensionless form 

with respect to a representative wavenumber k0 and a representative value of the energy spectrum E0 : 

 

 
 

    
















d

e
dR

R

MMMVVV

R

V

)},''(),(),'(),''(),(),'({

1
''

'1
4),()(

2

2

3'

1

1

2''2'2

/

'

2
2''2'2





























                      (2.1a)  

 

 

  














d

t

e

dR
R

MVV

MVMV

R

M

)},''(),(),'()1)('(

''

'
1

),'(),()'('),(),'()'({

1

4),()(

2

2

2

33

1

1

2'2

/

'

2

2'2




































                       

                           (2.1b) 

Where '2'''
222

   

They solved these equations numerically by using the following initial conditions for energy density functions 
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Also, they selected the following  initial conditions for energy spectrum functions ),(),( tkEandtkE
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The integrals on the right –hand side of (2.1a) and (2.1b) are calculated numerically by using appropriate sum 

rules at discrete values of ' and  and terminating the infinite integrals with respect to ' at a sufficiently 

large value of ' . At very large Reynolds number the integrand changes rapidly at small '  and does not 

vanish even at large ' . In order to evaluate such an integral accurately and efficiently we employ a non–

uniform mesh for ' whose size is an increasing function of ' . 

The following variables are introduced for this purpose:    

      ),(1.0),(01.0)10log(   R               (2.4)   

In terms of these new variables equations (2.1a) and (2.1b) 
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III EVALUATION OF STATISTICAL QUANTITIES AND GOVERNING LAWS   

The infinite integral with respect to ' is terminated at )2.0'(2log'    and calculated by 

Simpsons rule in the region  '  with a mesh size 01.0'   . The following values have been 

chosen for  :   
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These values of   have been confirmed to be sufficiently large by numerical results .The integration with 

respect to  is carried out by Simpson rule with a mesh size 1.0 .The derivative 



 is replaced by 

the forward–difference quotient with mesh size 0.0002RΔη  .Thus, the equations (2.5a) and (2.5b) are 

solved numerically for the initial conditions(2.2) ;  the Reynolds number R=20 and R=1600; and the energy 

spectrum functions ),(),( tkEandtkE
MV

are obtained as functions of the wavenumber k and time t. 

Important  statistical quantities characterizing magneto-hydrodynamic turbulence are derived from numerical 

results for energy spectrum functions for velocity field and magnetic field are as defined below: 
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The numerical integration of (2.5a)–(2.5b) uncovers following laws for the magnetohydrodynamic turbulence.  
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In the lowest subrange of the universal wavenumber range, the kinetic energy spectrum function and magnetic 

energy spectrum function both  are proportional to -5/3 power of the wave number in the inertial range. 

 These laws are symbolically written as follows: 
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These energy spectrum function has exactly the same power as Kolomogorov’s inertial- subrange spectrum. 

Next to previous subrange, there exists a subrange in which the energy spectrum functions of both the velocity 

field and magnetic field are inversely proportional to a wavenumber. These laws are symbolically written as 

follows:      
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 At still higher wave number, both the spectrum functions take the exponential form. Thus, the results obtained 

by the application of multiple–scale–cumulant–expansion method support the asymptotic decay of the spectrum 

functions for very high wavenumber irrespective of Reynolds numbers considered. The function ),( tk  which 

is the ratio of magnetic energy to kinetic energy is shown in fig 3. From figure 3 it is clear that ),( tk
 
grows 

monotonically to a value of 4 by t=1.2.The variation of ),( tk with time is linked to the magnetic Reynolds 

number of the flow.  The enstropy of velocity field , )( t
V

 and magnetic field , )( t
M

 are plotted in figure 4 

and figure 5 respectively. We infer from these graphs of enstropy  that they are analogous to each other. The 

shape of each of these graphs can be divided into three parts depending upon their behaviour with respect to 

time.   For R=20, the first part being from t = 0 to t =7, the second part from t =7 to t=15 and third part t=15 

onwards. The enstropy for both the fields, )( t
V

  and )( t
M

  increase monotonically with respect to time in 

the initial period.    

Thereafter, in the second period the curves attain the Gaussian shape. In the final period corresponding to t >15 

the enstropy of both the velocity and magnetic field increases monotonically. We also observe from these figures 

that as the Reynolds number increases there is decrease in the time taken to attain the maximum enstropy in case 

of both the fields. 

In the initial period before attaining the maximum value the enstropy of the velocity field is proportional to 2.2 

power of time and analogues to this enstropy of the magnetic field are proportional to 2.27 power of time. 

These laws symbolically are written as follows: 
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Next to previous period just after attaining the maximum value for R=20 and R=1600 the value of enstropy of 

both the fields decreases and this decrease is governed by the following laws:   

The enstropy of the velocity field is proportional to the negative 2.2 power of time and the enstropy of the 

magnetic field is proportional to the negative 2.25 power of time. These laws symbolically are written as follows                                            

                                                
25.22.2
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tttt
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                                             (3.4) 

These laws agree quite well with the experimental results. In the last period enstropy of the velocity field and 

magnetic field varies with respect to time as per the following laws: 
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The enstropy of the velocity field is proportional to the 1.03 power of time whereas the enstropy of the magnetic 

field is proportional to the 1.13 power of time. These laws symbolically are written as follows: 

                                                 
13.103.1

)(;)( tttt
MV

                                                    (3.5) 

The enstropy of magnetic field clearly grows more than enstropy of velocity field.                                         

From figure 6 and figure 7 showing the skewness of velocity field and magnetic field we infer that they are 

analogous to each other. The shape of each of these graphs can be divided into three parts depending upon their 

behaviour with respect to time.   For R=20, the first part being from t = 0 to t =7, the second part from t =7 to 

t=15 and third part t=15 onwards. The skewness for both the fields, )( tS
V

 and )( tS
M

 increases 

monotonically with respect to time in the initial period .Thereafter in the second period the curves attain the 

Gaussian shape. In the final period corresponding to t >15 the skewness of both the velocity and magnetic field 

increases monotonically. We also observe from these figures that as the Reynolds number increases there is 

decrease in the time taken to attain the maximum skewness in case of both the fields. 

For both the velocity and magnetic field their skewness grows very rapidly in the initial period and attains a 

quite large maximum value 0.37 for R=20 and 2.8 corresponding to R=1600 by velocity field. Similarly the 

corresponding maximum values for the magnetic field are 0.21 and 2.4 respectively. This reveals that there is a 

increase in the maximum value of skewness with rise in the Reynolds number. 

In the initial period before attaining the maximum value the skewness of the velocity field is proportional to 2.2 

power of time and an analogue to this skewness of the magnetic field is proportional to 2.27 power of time. 

These laws symbolically are written as follows: 
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Next to previous period just after attaining the maximum value for R=20 and R=1600 the value of skewness of 

both the field decreases and this decrease is governed by the following laws:   

The skewness of the velocity field is proportional to the negative 2.2 power of time and the skewness of the 

magnetic field is proportional to the negative 2.25 power of time. These laws are symbolically written as 

follows: 

                                             
25.22.2

)(;)(


ttSttS
VV

                                     (3.7) 

These laws agree quite well with the experimental results. In the last period skewness of the velocity field and 

magnetic field varies with respect to time as per the following laws: 

The skewness of the velocity field is proportional to the 1.03 power of time whereas the skewness of the 

magnetic field is proportional to the 1.13 power of time. These laws are symbolically written as follows: 

                                                        
13.103.1

)(;)( ttSttS
VV

                                              (3.8) 

From figure 6 and 7 we also notice that these skewness are a measure of the departure from Gaussianity , and 

indicate how transfer functions vary with the time at high wavenumber. They decrease substantially after having 

reached their sharp maximum and before stabilizing.  

The energy dissipation function for kinetic energy and magnetic energy clearly exhibit the characteristic of 

energy spectra as shown in figure 8 and figure 9. 
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The transfer spectra of magnetic energy and kinetic energy depict in figure 10 and figure 11 behave differently. 

Both transfer spectra are positive in the first shell, indicating that an inverse transfer of magnetic energy is 

occurring at low wavenumber. 

It is observed that for large Reynolds number, the energy containing range and the inertial subrange the energy 

dissipation is much smaller in magnitude than the energy transfer. For a given Reynolds number, in the 

neighbourhood of the wavenumber both the energy transfer functions change their sign satisfying the condition:                

                                                  0),(;0),(
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                                         (3.9) 

 as per the present closure scheme employed. Finally it is observed that the exponential spectrum occurs in the 

wavenumber range in which energy transfer is nearly balanced by the energy dissipation. A.Pouquet and 

G.S.Patterson[20] have investigated MHD turbulence numerically by restricting to magnetic Prandtl  number of 

one and obtained results for Reynolds number 40 based on Taylor micro scale. The predictions of present 

closure scheme for magnetic Prandtl number one and Reynolds number as large as 1600 are in good agreement 

with those of the former.  

The Taylor's microscale of the velocity field, )( t
V

 and for the magnetic field, )( t
M

 are plotted in 

figure 12 and figure 13.
 
At large Reynolds numbers the micro-scale for the velocity field and that of the 

magnetic field decreases rapidly from its initial value to a minimum and then increases almost proportionally 

with time. The minimum value of the Taylor’s micro-scale of the velocity field and that of the magnetic field is 

t=0.5 and t=0.6 for R=20 respectively and these values for R=1600 respectively are t=0.55 and t=0.65. 

The decrease of the Taylor’s micro-scale of the velocity field and that of the magnetic field with time is 

governed by the laws that the microscale of both the velocity field and magnetic field vary proportional to 

negative 0.5 power of the time. Symbolically these laws are 
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

tttt
MV

                                                   (3.10) 

The variation of the Taylor’s micro-scale of the velocity field and that of the magnetic field with time confirms 

the asymptotic decrease of Taylor’s micro-scale with time. Similarly the increase of the Taylor’s micro-scale of 

the velocity field and that of the magnetic field with time is governed by the laws that the microscale of both the 

velocity field and magnetic field vary proportional to 0.5 power of the time. Symbolically these laws are 
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Figure 3. )( t  verses time 

   
Figure 4. Enstropy for Velocity field (solid lines)                       Figure 5. Enstropy for Velocity field (solid lines) 

and Magnetic field (Dashed lines) at R=20                                      and Magnetic field (Dashed lines)at R=1600 
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Figure 6. Skewness for for Velocity field (solid lines)      Figure 7. Skewness for Velocity fie(solid  and Magnetic 

Magnetic field (Dashed lines) at R=20                                           field (Dashed lines) at R=1600       

                                                                                                                                    

 

 

 

 

 

 

 

 

Figure 8. Energy dissipation function for R=20 at (a) t=0 and (b) t=3    Figure 9. Energy dissipation function for                                                                                                                                       

,                                                                                                                 R=1600 at (a) t=0 and  (b) t=3 
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Figure 10. Kinetic (Solid lines) and Magnetic (dashed lines) energy      Figure 11. Kinetic (Solid lines) and    

transfer function for R=20 at (a) t =0 , (b) t=1  , (c) t=2   ,                       Magnetic (dashed lines) energy  transfer 

(d)   t=3 and (e) t=4                                                                                    function for R=1600 at (a) t =0 , (b) t=1          

                                                                                                                  (c)  t=2 , (d) t=3 and (e) t=4 

 

Figure 12. Kinetic (Solid lines) and Magnetic (dashed lines) energy     Figure 13. Kinetic (Solid lines) and    

transfer function for R=20 at (a) t =0 , (b) t=1  , (c) t=2   ,                     Magnetic (dashed lines) energy   transfer    

(d) t=3 and (e) t=4                                                                                    function for R=1600 at (a) t =0 , (b) t=1     

                                                                                                                 (c) t=2 ,    (d) t=3 and (e) t=4 

          

IV RESULTS  

1. Both the kinetic energy spectrum function and the magnetic energy spectrum function are found to be positive 

definite for all values of Reynolds numbers R=20 and R=1600.  

2. At large Reynolds numbers both the kinetic energy spectrum function and magnetic energy spectrum function 

take the form of Kolmogorov’s  -5/3  power spectrum in the inertial subrange , whose extent increases 

indefinitely with Reynolds number .In the higher wavenumber region beyond the inertial subrange the spectrum 

takes a universal form which is independent of its structure at lower wavenumbers.  

3. The universal spectrums are composed of three different subspectra, which are in order of increasing 

wavenumber, the k
-5/3

 spectrum, the k
-1

 spectrum and the exponential spectrum.  

4. The ratio of magnetic energy to kinetic energy )( t  which initially was 10
-2

, is found as a monotonically 

growing function with respect to time. The variation of )( t  with time is related to Reynolds number. 

5. As Reynolds number increases the time required to attain the maximum value of enstropy also increases. For 

both the velocity and magnetic field their enstrophy grows very rapidly in the initial period and the velocity field 

attains a quite large maximum value. This reveals that there is an increase in the maximum value of enstropy 

with rise in the Reynolds number. In the initial period the enstropy of the velocity field is proportional to 2.2 

power of time and analogues to this enstropy of the magnetic field is proportional to 2.27  power of time.In the 

intermediate period the enstropy of both the velocity and   magnetic fields assumes the Gaussian shape and  the 

enstropy of the velocity field  is proportional to the negative 2.2 power of time and the enstropy of the magnetic 

field  is proportional to the negative 2.25 power of time whereas in the third period the  enstropy increases with 
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time and enstropy of the velocity field  is proportional to the 1.03 power of time and the enstropy of the 

magnetic field  is proportional to  the 1.13 power of time. The enstropy of magnetic field grows more than the 

enstropy of velocity field.  

6. The initial value of skeness is identically zero for both the reactants. In the initial period the the skewness of 

the velocity field is proportional to 2.2 power of time and analogues to this skewness of the magnetic field is 

proportional to 2.27 power of time. In the intermediate period the skewness  of both the velocity and magnetic 

fields assumes the Gaussian shape and  the skewness of the velocity field  is proportional to the negative 2.2 

power of time and the skewness of the magnetic field  is proportional to the negative 2.25 power of time 

whereas in the third period the skewness increases with time .The skewness of the velocity field  is proportional 

to the 1.03 power of time and the skewness of the magnetic field  is  proportional to the 1.13 power of time.  

7. As Reynolds number increases the energy dissipation decreases in magnitude than the energy transfer. The 

transfer spectra of magnetic energy and kinetic energy behave differently. As the Reynolds number takes the 

larger value the wavenumber at which energy transfer function of both the field vanish is shifted to the lower 

wavenumber.  

8. The Taylor’s microscale of both the velocity field and magnetic field varies proportionally to 0.5 power of the 

time. 
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