
International Journal of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.4, Special Issue (01), March 2015 ISSN-2319-8354(E)

174 | P a g e

DEMOGRAPHIC CLUSTERING OF PEPTIDE

FRAGMENTS USING PARALLEL PROGRAMMING

APPROACH

Aman Sharma

Project Student, Indian Institute of Science, Bangalore,

Supercomputer Education and Research Centre

M. Tech Scholar CSE Student, School of Computing Science & Engineering,

Vellore Institute of Technology, Vellore, Tamilnadu, (India)

ABSTRACT

An existing algorithm that is demographic clustering of peptide fragments that work in serial manner. Parallel

programming approach used to reduce the delay and increased the efficiency of the algorithm. We thus show

that the parallel programming can provide better results. Because serial processing works on single core that’s

why it takes more time if we have large amount of data and files at that time parallel cores can easily split the

load among the processors and provide high efficiency. In this paper, our concept representing hash table

modification and clustering using parallel programming. As the domain, a perl implementation dealing with

increase the efficiency of the algorithm and reducing the time delay. The proposed work shows the efficiency

difference between disk and RAM.

Keyword: Demographic Clustering, Peptide Fragments and Parallel Programming.

BACKGROUND

Program is some set of instructions. Process is program is in execution. During last year’s performance is

becoming the major issue. Today, almost everything is our life has a connection with how to reduce delay and

increase high performance of the system. The performance has become one of the most important platforms for

research in computer science field. The parallel programming plays the major role in terms of efficiency and

performance.

Parallel programming is one major area to increase the performance by split the workload among all the threads.

Parallel programming is running program for utilizing all the core and try to divide equal workload among all

the processes.

In case of threads of execution is the smallest sequence of programmed instructions that can be managed

independently by an OSS. OSS stands for operating system scheduler. Some regions behind for using threads

like increase performance which is easy method to take advantage of multi-core, better utilization which means

reduce latency and efficient data sharing which is sharing data through memory more efficient than message-

passing. There is risks increase complexity of application, difficult to debug (data races, deadlocks etc.). Modern

operating system load programs as process like resource holder and execution. A process starts executing at its

entry point as a thread. Threads can create other threads within the process.

International Journal of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.4, Special Issue (01), March 2015 ISSN-2319-8354(E)

175 | P a g e

Concurrency means two or more threads are in progress at the same time. Parallelism means two or more

threads are executing at same time.

I. INTRODUCTION

Demographic clustering using peptide fragment problem based on the bioinformatics and computer science field

with parallel programming language. The existing work of demographic clustering using peptide fragment was

based on the serial manner. So that is why that was not giving the satisfactory performance. This work was

taking more time and delay that was major problem for those people who are working in demographic clustering

using peptide fragment topic. The problem behind demographic clustering using peptide fragment was based on

serial manner. We have proposed the parallel version demographic clustering using peptide fragment that is

more efficient than existing serial manner. The proposed work increased the efficiency of demographic

clustering using peptide fragments with parallel programming so more fragment will be work fast and provide

better results compare to serial version.

II. PARALLEL PROGRAMMING APPROACH

The Demographic clustering using peptide fragments with parallel programming needed because increasing the

efficiency of running fragments. Parent process forks child processes. Each child process reads a set of files and

creates local hash tables. Then each child picks ($FR/Number of child processes) random fragments from local

hash tables and sends to parent process. The parent adds the fragments received from the child processes and

creates a final hash table which will have $FR entries finally.

III. SEQUENTIAL VS. PARALLEL APPROACH

3.1 Sequential Algorithm for Demographic Clustering Of Peptide Fragments

The sequential algorithm for demographic clustering of peptide fragments has four inputs like a sequence of

pairs of angles (phi_1, psi_1), (phi_2, and psi_2) and so on, fragment length FL, distance threshold R and angle

difference ANG.

Firstly, a sequence of overlapping fragments, of length FL, is created from the sequence of pairs of angles: F_1,

F_1.

Then, in two phases, the algorithm clusters these fragments such that each fragment in a cluster is within a

distance R and angle ANG from the center or average of the cluster.

In the first phase, the algorithm picks each fragment F_k and checks each existing cluster center C_L as to

whether they satisfy the distance and angle conditions, and if yes, the algorithm adds the fragment to the cluster

and computes the new center, otherwise a new cluster is created with F_k as its first member.

In the second phase, the algorithm checks each fragment F_k as to whether it still satisfies the conditions with

respect to the center of its cluster. If it does not, then F_k is removed from its cluster, and center of that cluster is

recomputed. Then, a search is performed over the rest of the clusters to see if F_k can be accommodated within

any of them. If such a cluster is found, then F_k is put in that cluster and its center is recomputed. Otherwise, a

new cluster is created with F_k as its first member.

The second phase of the algorithm is repeated until the number of rejects in a round is less than or equal to the

number of rejects in the previous round.

International Journal of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.4, Special Issue (01), March 2015 ISSN-2319-8354(E)

176 | P a g e

3.2 Parallel Algorithm for Demographic Clustering Of Peptide Fragments

Similarly the parallel algorithm for demographic clustering of peptide fragments has four inputs like a sequence

of pairs of angles (phi_1, psi_1), (phi_2, and psi_2) and so on, fragment length FL, distance threshold R and

angle difference ANG. In parallel algorithm for demographic clustering of peptide fragments has component’s

read all file names in current directory ending with .rin into file_names array, Read no. of processes = P, fork P

processes, for starting process process 0 read files 0 to (F/P-1), push psi and phi values into phi _temp and

psi_temp arrays, select FR/P random fragments into array “a”, return array a to parent, same apply for all the

process. Combine fragments returned by P child processes and create hash table and Assign fragments into

clusters. Parent process forks child processes. Each child process reads a set of files and creates local hash

tables. Then each child picks ($FR/Number of child processes) random fragments from local hash tables and

sends to parent process. The parent adds the fragments received from the child processes and creates a final hash

table which will have $FR entries finally.

All clusters should be visible to all processes. Otherwise, each process would have its own set of clusters some

of which would overlap partially with clusters present in other processes. After parallel clustering, the parent

process should do additional processing to merge clusters formed by the child processes and reassign fragments.

3.3 Design of Parallel Architecture

Parallel algorithm architecture is a conceptual model that defines the structure, behavior and more views of the

system.

International Journal of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.4, Special Issue (01), March 2015 ISSN-2319-8354(E)

177 | P a g e

The above represents read all file names in current directory ending with .rin into file_names array, read no. of

processes = P, No. of fragments = FR ; No. of files = F, Fork P processes, Process 0 read files 0 to (F/P-1), Push

psi and phi values into phi _temp and psi_temp arrays, select FR/P random fragments into array “a”, return array

a to parent, combine fragments returned by P child processes and create hash table and assign fragments into

clusters.

International Journal of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.4, Special Issue (01), March 2015 ISSN-2319-8354(E)

178 | P a g e

Reading files to create fragment list is the most time consuming step in the serial code. Serial fragment list

creation takes around 6seconds compared to around 1 second taken by clustering step. So by parallelizing

fragment list creation step, the most time consuming part of the code has been parallelized. Also fragment list

creation step is readily parallelizable compared to clustering since there is no synchronization needed between

processes for fragment list creation. When clustering step is parallelized, the parent processes has to do

additional work in combining the clusters returned by child processes in addition to combining the fragment list.

Clusters returned by the child processes might overlap and hence the parent has to do additional work to

reassign fragments to correct clusters. Clustering has less parallelism and more overhead. So parallelizing it

doesn't improve the overall time.

IV. RESULT ANALYSIS

The following results are based on hash table modification that shows the difference between disk time and

RAM time. The parallel hash table code is also available based on the request

4.1 Disk Results Table

4.2 Ram Results Table

 Cores
Total time Hash time

1 7.34 5.79

2 4.99 2.95

3 4.34 2.05

4 4.06 1.82

5 3.52 1.84

6 3.36 1.56

7 3.27 1.49

 Cores
 total time Hash time

1 8.7 5.88

2 5.62 2.94

3 4.36 2.06

4 3.81 1.61

5 4.06 1.83

6 3.44 1.55

7 3.62 1.57

8 3.68 1.4

International Journal of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.4, Special Issue (01), March 2015 ISSN-2319-8354(E)

179 | P a g e

8 3.42 1.4

4.3 Disk Results with Different Cores

International Journal of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.4, Special Issue (01), March 2015 ISSN-2319-8354(E)

180 | P a g e

4.4 Ram Results with Different Cores

International Journal of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.4, Special Issue (01), March 2015 ISSN-2319-8354(E)

181 | P a g e

4.5 Total Results Representation with Ram and Disk

GRAPH 1: DISK& RAM RESULTS TABLE

4.6 Disk Results with Different Cores and Graph

GRAPH 2: DISK RESULTS TABLE WITH 2 CORES

International Journal of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.4, Special Issue (01), March 2015 ISSN-2319-8354(E)

182 | P a g e

GRAPH 3: DISK RESULTS TABLE WITH 4 CORES

GRAPH 4: DISK RESULTS TABLE WITH 8 CORES

4.7 Ram Results with Different Cores and Graph

GRAPH 5: RAM RESULTS TABLE WITH 2 CORES

International Journal of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.4, Special Issue (01), March 2015 ISSN-2319-8354(E)

183 | P a g e

GRAPH 6: RAM RESULTS TABLE WITH 4 CORES

GRAPH 7: RAM RESULTS TABLE WITH 8 CORES

4.8 Snapshots

International Journal of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.4, Special Issue (01), March 2015 ISSN-2319-8354(E)

184 | P a g e

V. CONCLUSION

We proposed one approach to parallelizing the demographic clustering of peptide algorithm. The approach is

suitable for multi core computations and the computation we have modified based on serial manner of

algorithm. The demographic clustering of peptide algorithm work based on reduction. Parallelization technique

applied on sequence method for improving the efficiency of the algorithm. In proposed parallelization work we

have modified demographic clustering of peptide fragments by parallel programming approach. All the

existing methods are implemented in proper way both serial and parallel way. Finally after analyzing the

algorithm performance and comparing the result or the algorithm in both parallel and serial approach we can

come to a conclusion that our system is computationally efficient in parallel manner. The system should

consider more on the CPU and memory usage as they are the main factor that should be reduced during parallel

execution of the system by utilizing all the four cores of the processor.

VI. FUTURE WORK

The future work in this work is to take million or billions of fragments and try to utilize more than four cores.

After Parallelism these steps more efficiency will come if each cluster or for X clusters, fork/spawn X processes,

In each process compute distance of fragment from fragment center, Unlabeled fragments that are out of cluster

based on distance threshold from center.

REFERENCES

[1] Karuppasmy Manikandan, DebnathPal, Suryanarayanarao Ramkumar, Nathan E Brener, Sitharama S

Iyengar and Guna Seetharaman, “Functionally important segments in proteins dissected using gene

ontology and geometric clustering ofpeptidefragments”, Genome biology, 2008.

[2] http://en.wikipedia.org/wiki/Parallel_programming_model

[3] http://en.wikipedia.org/wiki/Thread_(computing)

[4] http://en.wikipedia.org/wiki/Cluster_analysis

[5] http://en.wikipedia.org/wiki/Multi-core_processor

http://en.wikipedia.org/wiki/Parallel_programming_model
http://en.wikipedia.org/wiki/Thread_(computing)
http://en.wikipedia.org/wiki/Cluster_analysis
http://en.wikipedia.org/wiki/Multi-core_processor

International Journal of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.4, Special Issue (01), March 2015 ISSN-2319-8354(E)

185 | P a g e

[6] https://metacpan.org/pod/Parallel::ForkManager

[7] http://search.cpan.org/~dlux/Parallel-ForkManager-0.7.5/ForkManager.pm

[8] http://aaroncrane.co.uk/talks/multicore_for_mortals/paper.html

[9] http://aaroncrane.co.uk/talks/multicore_for_mortals/paper.html

[10] http://www.go4expert.com/articles/parallel-processing-faster-perl-scripts-t9083/

[11] http://perltricks.com/article/61/2014/1/21/Make-your-code-run-faster-with-Perl-s-secret-turbo-module

[12] http://act.yapc.eu/ye2013/talk/4946

[13] https://sandeepnamburi.wordpress.com/2011/07/31/parallel-processing-with-perl-for-bioinformatics/

https://metacpan.org/pod/Parallel::ForkManager
http://search.cpan.org/~dlux/Parallel-ForkManager-0.7.5/ForkManager.pm
http://aaroncrane.co.uk/talks/multicore_for_mortals/paper.html
http://aaroncrane.co.uk/talks/multicore_for_mortals/paper.html
http://www.go4expert.com/articles/parallel-processing-faster-perl-scripts-t9083/
http://perltricks.com/article/61/2014/1/21/Make-your-code-run-faster-with-Perl-s-secret-turbo-module
http://act.yapc.eu/ye2013/talk/4946
https://sandeepnamburi.wordpress.com/2011/07/31/parallel-processing-with-perl-for-bioinformatics/

