International Journal of Advance Research In Science And Engineering http://www.ijarse.com
IJARSE, Vol. No.4, Special Issue (01), March 2015 ISSN-2319-8354(E)

DEMOGRAPHIC CLUSTERING OF PEPTIDE
FRAGMENTS USING PARALLEL PROGRAMMING
APPROACH

Aman Sharma

Project Student, Indian Institute of Science, Bangalore,
Supercomputer Education and Research Centre
M. Tech Scholar CSE Student, School of Computing Science & Engineering,
Vellore Institute of Technology, Vellore, Tamilnadu, (India)

ABSTRACT

An existing algorithm that is demographic clustering of peptide fragments that work in serial manner. Parallel
programming approach used to reduce the delay and increased the efficiency of the algorithm. We thus show
that the parallel programming can provide better results. Because serial processing works on single core that’s
why it takes more time if we have large amount of data and files at that time parallel cores can easily split the
load among the processors and provide high efficiency. In this paper, our concept representing hash table
modification and clustering using parallel programming. As the domain, a perl implementation dealing with
increase the efficiency of the algorithm and reducing the time delay. The proposed work shows the efficiency
difference between disk and RAM.

Keyword: Demographic Clustering, Peptide Fragments and Parallel Programming.

BACKGROUND

Program is some set of instructions. Process is program is in execution. During last year’s performance is
becoming the major issue. Today, almost everything is our life has a connection with how to reduce delay and
increase high performance of the system. The performance has become one of the most important platforms for
research in computer science field. The parallel programming plays the major role in terms of efficiency and
performance.

Parallel programming is one major area to increase the performance by split the workload among all the threads.
Parallel programming is running program for utilizing all the core and try to divide equal workload among all
the processes.

In case of threads of execution is the smallest sequence of programmed instructions that can be managed
independently by an OSS. OSS stands for operating system scheduler. Some regions behind for using threads
like increase performance which is easy method to take advantage of multi-core, better utilization which means
reduce latency and efficient data sharing which is sharing data through memory more efficient than message-
passing. There is risks increase complexity of application, difficult to debug (data races, deadlocks etc.). Modern
operating system load programs as process like resource holder and execution. A process starts executing at its
entry point as a thread. Threads can create other threads within the process.

174|Page

International Journal of Advance Research In Science And Engineering http://www.ijarse.com
IJARSE, Vol. No.4, Special Issue (01), March 2015 ISSN-2319-8354(E)

Concurrency means two or more threads are in progress at the same time. Parallelism means two or more

threads are executing at same time.
I. INTRODUCTION

Demographic clustering using peptide fragment problem based on the bioinformatics and computer science field
with parallel programming language. The existing work of demographic clustering using peptide fragment was
based on the serial manner. So that is why that was not giving the satisfactory performance. This work was
taking more time and delay that was major problem for those people who are working in demographic clustering
using peptide fragment topic. The problem behind demographic clustering using peptide fragment was based on
serial manner. We have proposed the parallel version demographic clustering using peptide fragment that is
more efficient than existing serial manner. The proposed work increased the efficiency of demographic
clustering using peptide fragments with parallel programming so more fragment will be work fast and provide

better results compare to serial version.
I1. PARALLEL PROGRAMMING APPROACH

The Demographic clustering using peptide fragments with parallel programming needed because increasing the
efficiency of running fragments. Parent process forks child processes. Each child process reads a set of files and
creates local hash tables. Then each child picks ($FR/Number of child processes) random fragments from local
hash tables and sends to parent process. The parent adds the fragments received from the child processes and

creates a final hash table which will have $FR entries finally.
I11. SEQUENTIAL VS. PARALLEL APPROACH

3.1 Sequential Algorithm for Demographic Clustering Of Peptide Fragments

The sequential algorithm for demographic clustering of peptide fragments has four inputs like a sequence of
pairs of angles (phi_1, psi_1), (phi_2, and psi_2) and so on, fragment length FL, distance threshold R and angle
difference ANG.

Firstly, a sequence of overlapping fragments, of length FL, is created from the sequence of pairs of angles: F_1,
F_1.

Then, in two phases, the algorithm clusters these fragments such that each fragment in a cluster is within a
distance R and angle ANG from the center or average of the cluster.

In the first phase, the algorithm picks each fragment F_k and checks each existing cluster center C_L as to
whether they satisfy the distance and angle conditions, and if yes, the algorithm adds the fragment to the cluster
and computes the new center, otherwise a new cluster is created with F_k as its first member.

In the second phase, the algorithm checks each fragment F_k as to whether it still satisfies the conditions with
respect to the center of its cluster. If it does not, then F_k is removed from its cluster, and center of that cluster is
recomputed. Then, a search is performed over the rest of the clusters to see if F_k can be accommodated within
any of them. If such a cluster is found, then F_Kk is put in that cluster and its center is recomputed. Otherwise, a
new cluster is created with F_k as its first member.

The second phase of the algorithm is repeated until the number of rejects in a round is less than or equal to the

number of rejects in the previous round.
175|Page

International Journal of Advance Research In Science And Engineering
IJARSE, Vol. No.4, Special Issue (01), March 2015

http://www.ijarse.com
ISSN-2319-8354(E)

3.2 Parallel Algorithm for Demographic Clustering Of Peptide Fragments

Similarly the parallel algorithm for demographic clustering of peptide fragments has four inputs like a sequence
of pairs of angles (phi_1, psi_1), (phi_2, and psi_2) and so on, fragment length FL, distance threshold R and
angle difference ANG. In parallel algorithm for demographic clustering of peptide fragments has component’s
read all file names in current directory ending with .rin into file_names array, Read no. of processes = P, fork P
processes, for starting process process 0 read files 0 to (F/P-1), push psi and phi values into phi _temp and
psi_temp arrays, select FR/P random fragments into array “a”, return array a to parent, same apply for all the
process. Combine fragments returned by P child processes and create hash table and Assign fragments into
clusters. Parent process forks child processes. Each child process reads a set of files and creates local hash
tables. Then each child picks ($FR/Number of child processes) random fragments from local hash tables and
sends to parent process. The parent adds the fragments received from the child processes and creates a final hash
table which will have $FR entries finally.

All clusters should be visible to all processes. Otherwise, each process would have its own set of clusters some
of which would overlap partially with clusters present in other processes. After parallel clustering, the parent

process should do additional processing to merge clusters formed by the child processes and reassign fragments.

3.3 Design of Parallel Architecture
Parallel algorithm architecture is a conceptual model that defines the structure, behavior and more views of the

system.

Read all file names in current directory ending with rin into file_names
array.

Read no. of processes =P
No. of fragments =FR ; No. of files =F

Fork P processes

Process 0 Process 1 Process p-1
Read files 0 to Read files FP to Read files ((P-
(F/P-1) (2F/P-1) L1V*F/P) to F-1

Push psi and phi
values into phi

Push psi and phi
values into phi

Push psi and phi
values into phi

_temp and _temp and _temp and
psi_temp arrayvs psi_temp arrays psi_temp arrays
Select FR/P Select FR/P Select FR/P
random random random
fragments into fragments into fragments into
arrav “a” arrav “a” array “a”

Petumn array a to
parent

Peturn arrav a to
parent

Peturn array a to
parent

Combine fragments returned by P child processes and create hash table

Assign fragments into clusters

176 |Page

International Journal of Advance Research In Science And Engineering

IJARSE, Vol. No.4, Special Issue (01), March 2015

http://www.ijarse.com
ISSN-2319-8354(E)

The above represents read all file names in current directory ending with .rin into file_names array, read no. of
processes = P, No. of fragments = FR ; No. of files = F, Fork P processes, Process 0 read files 0 to (F/P-1), Push

psi and phi values into phi _temp and psi_temp arrays, select FR/P random fragments into array “a”, return array

a to parent, combine fragments returned by P child processes and create hash table and assign fragments into

clusters.

Read all file names in current directory ending with _rin into file_names

Process 0

Read files 0 to
(F/P-1)

Push psi and phi
values into phi
_temp and

Ral.IEMR arrays

Select FR/P
random fragments
into array "a"

Return array a to
parent

array.

Read no.of processes =P

MNo.of fragments = FR ; No. of files = F

Fork P processes

Process 1

Fead files F/P to
[2F/P-1)

Push psi and phi
values into phi
_tempand

psl.tEmp arrays

Select FRSP
random fragments
imto array “a”

Return array a to
parent

Process p-1

Read files [(P-
1)*F/F) to F-1

Push psi and phi
values into phi
_tempand

psl.temp arrays

Select FR/P
random fragments
into array “a"

Return array a to
parent

Combine fragments returned by P child processes and create hash table

Assign fragments into clusters

177|Page

http://www.ijarse.com
ISSN-2319-8354(E)

International Journal of Advance Research In Science And Engineering
IJARSE, Vol. No.4, Special Issue (01), March 2015

Reading files to create fragment list is the most time consuming step in the serial code. Serial fragment list
creation takes around 6seconds compared to around 1 second taken by clustering step. So by parallelizing
fragment list creation step, the most time consuming part of the code has been parallelized. Also fragment list
creation step is readily parallelizable compared to clustering since there is no synchronization needed between
processes for fragment list creation. When clustering step is parallelized, the parent processes has to do
additional work in combining the clusters returned by child processes in addition to combining the fragment list.
Clusters returned by the child processes might overlap and hence the parent has to do additional work to

reassign fragments to correct clusters. Clustering has less parallelism and more overhead. So parallelizing it

doesn't improve the overall time.

IV. RESULT ANALYSIS

The following results are based on hash table modification that shows the difference between disk time and

RAM time. The parallel hash table code is also available based on the request

4.1 Disk Results Table

total time Hash time
Cores
1 8.7 5.88
2 5.62 2.94
3 4.36 2.06
4 3.81 1.61
5 4.06 1.83
6 3.44 1.55
7 3.62 1.57
8 3.68 14
4.2 Ram Results Table
Total time Hash time
Cores

1 7.34 5.79
2 4.99 2.95
3 4.34 2.05
4 4.06 1.82
5 3.52 1.84
6 3.36 1.56
7 3.27 1.49

178 |Page

International Journal of Advance Research In Science And Engineering
IJARSE, Vol. No.4, Special Issue (01), March 2015

http://www.ijarse.com

ISSN-2319-8354(E)

8 3.42 1.4

4.3 Disk Results with Different Cores
Table 1. core 2 | Fragment length
Number of
Fragments B 10 12 14 16 18 20
1000 476 6.85 6.34 8.06 8.96 957 10.32
2000 1139 | 14.04 15.53 15.14 25.59 23.37 256
4000 2371 | 5483 56.02 93.64 68.37 90.85 85.09
6000 4348 | 1102 160.01 118.07 | 17195 | 19957 | 176.13
8000 102.34 [17045 | 18897 | 23895 |351.92 | 21238 | 30943
Table 2. core 4 | Fragment length
Number of
Fragments 8 10 12 14 16 18 20
1000 353 4 88 545 6.17 6.75 7.66 833
2000 8.41 11.25 14 .58 16.59 | 21.31 2282 2238
4000 26.31 47 61 6742 |6864 | 7981 10798 61.64
6000 5321 77022 | 91.18 11848 | 17532 | 196.152 | 17355
8000 8323 12799 | 18267 | 373.29 | 343.02 | 334 91 376.26

179|Page

International Journal of Advance Research In Science And Engineering

IJARSE, Vol. No.4, Special Issue (01), March 2015

http://www.ijarse.com

ISSN-2319-8354(E)

Table 3. core 8 Fragment length
Number of
Fragments B 10 12 14 16 18 20
1000 326 437 522 594 6.45 717 7.68
2000 828 13.09 13.53 13.3 18.69 2522 2228
4000 1 458 437 55.69 77.09 85.62 96.41
6000 39.63 86.14 1079 | 169.04 | 16797 | 119.03 | 1654
4.4 Ram Results with Different Cores
Table 4. core 8 | Fragment length
Number of
Fragments 8 10 12 14 16 18 20
1000 591 6.7 6.97 7.96 8.85 9.48 10.31
2000 10.62 14 58 21.03 15.55 17.43 2317 20.33
4000 2493 60.28 5547 69.18 65.34 7773 100
6000 40.48 107.11 115.44 | 1403 1708 23325 | 21359
8000 85.86 167.09 | 22419 | 25067 |29724 33238 |3693
Table 5. core 8 | Fragment length
NMumber of
Fragments 8 10 12 14 16 18 20
1000 3.85 5.1 542 6.15 7.02 7.39 77
2000 8.26 10.97 2276 2012 227 227 23.06
4000 21.82 _TT 5423 56.03 63.44 88.72 77.94
6000 55.68 10194 | 15562 | 19047 |19746 |18985 |21202
8000 81.07 163.78 | 21754 | 1955 281.05 |38988 |516.04

180|Page

International Journal of Advance Research In Science And Engineering

IJARSE, Vol. No.4, Special Issue (01), March 2015

http://www.ijarse.com

ISSN-2319-8354(E)

Table 5. core 8 | Fragment length
Number of
Fragments 8 10 12 14 16 18 20
1000 3.62 5.08 5.29 5.96 6.54 714 7.54
2000 843 14.85 19.63 12.9 15.55 2h.18 18.1
4000 28.75 53.11 43.55 94.32 79.56 5567 9763
6000 53.64 87.12 112.31 139.11 165.13 154.78 207 66
8000 64.35 118.03 183 33211 397 41 202.18 2897
4.5 Total Results Representation with Ram and Disk
9 T T T T
Total Time(Disk)
8 r HashTable Creation(Disk)
21 Total Time(RAM) -
- HashTable Creation(RAM)
e 6} |
(=]
e a4t s - 1
= 2 . .
3]
2 L
3 2 3 a 5 6 7 8
CPU Cores
GRAPH 1: DISK& RAM RESULTS TABLE
4.6 Disk Results with Different Cores and Graph
2 Cores
400 .
FL=8
350 FL=10
. 300} FL=12 - = 4
7 FL=14
g 250 | FL=16 1
8 200 | FL=18 -
:; FL=20 - .
g 150}
= 100} . -
50 | -
fooo 2000 2000 6000 8000

Number of fragments

GRAPH 2: DISK RESULTS TABLE WITH 2 CORES

181|Page

International Journal of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.4, Special Issue (01), March 2015

ISSN-2319-8354(E)

4 Cores
400 T Ll Ll
FL=8 -
350 | FL=10 1
. 300 | FL=12 - =
) FL=14 =
§ 250 FL=16 7
@ 200 | FL=18 A
;’ FL=20 - b
g 150 = ‘ .
~ 100} . . .
50 | - - 1
=== , =) : A
‘POOO 2000 4000 6000 8000
Number of fragments
GRAPH 3: DISK RESULTS TABLE WITH 4 CORES
8 Cores
400 :
FL=8 <
350 | FL=10 g
i 300 - FLS12 - -4
] FL=14 o
S 250 FL=16 = 7
200 k- FL=18 .
;’ FL=20 8
£ 150 -
= 100} 5 - .
50 P 2 -
S B — — % : — W < L
‘POOO 2000 4000 6000 8000

Number of fragments

GRAPH 4: DISK RESULTS TABLE WITH 8 CORES

4.7 Ram Results with Different Cores and Graph

2 Cores

400 : : |
FL=8 — ‘
| FL=10 5
&= 00r Elai2.un ﬂ
g FL=14
= 250 Fl<16)—q j
; FL=20
E 150 + -
= 100t . : -
50 f - ; g '
| ———— : I '1
‘POOO 2000 4000 6000

Number of fragments

GRAPH 5: RAM RESULTS TABLE WITH 2 CORES

8000

182|Page

International Journal of Advance Research In Science And Engineering
IJARSE, Vol. No.4, Special Issue (01), March 2015

http://www.ijarse.com
ISSN-2319-8354(E)

4 Cores
600 T : -
FL=8 .
FL=12 =
Eé‘ 400 | FL=14 d
s FL=16
& 300} FL=18 i
v FL=20
E 200¢} . :
’_ -~
100 | = -
fooo 2000 4000 6000 8000
Number of fragments
GRAPH 6: RAM RESULTS TABLE WITH 4 CORES
8 Cores
400 + T T
FL=8
350 t FL=10 R
5 20| ot :
g -
& 250 FL=16]
8 200} FL=18 5 |
‘O—J’ FL=20 e
g 150 B a
= 100t} " - 2
50 t 5 -
D - T 1 1
‘POOO 2000 4000 6000 8000
Number of fragments
GRAPH 7: RAM RESULTS TABLE WITH 8 CORES
4.8 Snapshots

2 user@gisvm: ~/Desktop/upgrade

File Edit

View

Search lTerminal Help

1Iser@gisvm: ~/Desktop/upgrades perl demo clust.pl
Jsage: ./demo clust.pl i <inputlist> -T
<minimum distance> -c =<min cluster to print>
<=occupancy> -1 <loop # iterations> -5 <read
andomly read # fragments from input=>

1Iser@gisvm: ~/Desktop/upgrades perl.exe demo clust

perl.exe: command not found

:~/Desktop/upgrades perl.exe demo clust.

.exe: command not found

.exe: command not found
1ser@gisvm:~/Desktop/upgrade$ perl demo clust.pl
Program: demo clust.pl
utput: RESULT
Inputlist:list
Fragment length:12
orsion diff (degrees):60
Jistance Threshold (degrees):
Print Clusters with minimum n
I-Factor screen (== Angs**2):60
ccupancy Threshold (>=):1
umber of i1terations to refine
umber of Fragments serially read
iItomatic):0

ber of points:2

(B=automatic) :0
from

<fragment
-b =bfactor less than X angs**
first

.pl -1

-1 list

Input List

Llength> -t <torsion diff=>

fTragments Trom inputs

list - -c 2

pl - list -f -c 2

pl -i list -f 2 - 2

-f 12

PDB Files for Calculation (0=a -

183|Page

International Journal of Advance Research In Science And Engineering http://www.ijarse.com
IJARSE, Vol. No.4, Special Issue (01), March 2015 ISSN-2319-8354(E)

~

user@gisvm: ~/Desktop/upgrade

File Edit View Search Terminal Help

Number of iterations to refine (@=automatic):0

jumber of Fragments serially read from Input List PDB Files for Calculation (0=a
tomatic):©

Number of Fragments randomly read from Input List PDB Files for Calculation (0=a
tomatic):0

Note: Serial reading is done prior to random selection in case you specified bot
options

nd making Rin files. Elapsed: 6.000406, User: 8.65, System=0.02
-nd making Hash Table. Elapsed: ©0.500968, User: 0.27, System=6.1
nd Assigning 1903 Clusters to 2460+1 records. Elapsed: 30.925351, User: 30.19,
pystem=0.15

: 43 reassigned. Time Elapsed: 59.206334, User: 57.93, System=0.18

: 28 reassigned. Time Elapsed: 87.454491, User: 85.72, System=0.18

: 21 reassigned. Time Elapsed: 122.861663, User: 116.27, System=0.28

: 23 reassigned. Time Elapsed: 151.363564, User: 144.28, System=0.3

Elapsed: 152.315491, User: 145.11, System=0.32
1:~/Desktop/upgrades time demo clust.pl

V. CONCLUSION

We proposed one approach to parallelizing the demographic clustering of peptide algorithm. The approach is
suitable for multi core computations and the computation we have modified based on serial manner of
algorithm. The demographic clustering of peptide algorithm work based on reduction. Parallelization technique
applied on sequence method for improving the efficiency of the algorithm. In proposed parallelization work we
have modified demographic clustering of peptide fragments by parallel programming approach. All the
existing methods are implemented in proper way both serial and parallel way. Finally after analyzing the
algorithm performance and comparing the result or the algorithm in both parallel and serial approach we can
come to a conclusion that our system is computationally efficient in parallel manner. The system should
consider more on the CPU and memory usage as they are the main factor that should be reduced during parallel

execution of the system by utilizing all the four cores of the processor.

VI. FUTURE WORK

The future work in this work is to take million or billions of fragments and try to utilize more than four cores.
After Parallelism these steps more efficiency will come if each cluster or for X clusters, fork/spawn X processes,
In each process compute distance of fragment from fragment center, Unlabeled fragments that are out of cluster
based on distance threshold from center.

REFERENCES

[1] Karuppasmy Manikandan, DebnathPal, Suryanarayanarao Ramkumar, Nathan E Brener, Sitharama S
Iyengar and Guna Seetharaman, “Functionally important segments in proteins dissected using gene
ontology and geometric clustering ofpeptidefragments”, Genome biology, 2008.

[2] http://en.wikipedia.org/wiki/Parallel_programming_model

[3] http://en.wikipedia.org/wiki/Thread (computing)

[4] http://en.wikipedia.org/wiki/Cluster_analysis

[5] http://en.wikipedia.org/wiki/Multi-core processor

184|Page

http://en.wikipedia.org/wiki/Parallel_programming_model
http://en.wikipedia.org/wiki/Thread_(computing)
http://en.wikipedia.org/wiki/Cluster_analysis
http://en.wikipedia.org/wiki/Multi-core_processor

International Journal of Advance Research In Science And Engineering http://www.ijarse.com
IJARSE, Vol. No.4, Special Issue (01), March 2015 ISSN-2319-8354(E)

[6] https://metacpan.org/pod/Parallel::ForkManager

[7]1 http://search.cpan.org/~dlux/Parallel-ForkManager-0.7.5/ForkManager.pm

[8] http://aaroncrane.co.uk/talks/multicore_for_mortals/paper.html

[9] http://aaroncrane.co.uk/talks/multicore for_mortals/paper.html

[10] http://www.godexpert.com/articles/parallel-processing-faster-perl-scripts-t9083/

[11] http://perltricks.com/article/61/2014/1/21/Make-your-code-run-faster-with-Perl-s-secret-turbo-module
[12] http://act.yapc.eu/ye2013/talk/4946

[13] https://sandeepnamburi.wordpress.com/2011/07/31/parallel-processing-with-perl-for-bioinformatics/

185|Page

https://metacpan.org/pod/Parallel::ForkManager
http://search.cpan.org/~dlux/Parallel-ForkManager-0.7.5/ForkManager.pm
http://aaroncrane.co.uk/talks/multicore_for_mortals/paper.html
http://aaroncrane.co.uk/talks/multicore_for_mortals/paper.html
http://www.go4expert.com/articles/parallel-processing-faster-perl-scripts-t9083/
http://perltricks.com/article/61/2014/1/21/Make-your-code-run-faster-with-Perl-s-secret-turbo-module
http://act.yapc.eu/ye2013/talk/4946
https://sandeepnamburi.wordpress.com/2011/07/31/parallel-processing-with-perl-for-bioinformatics/

