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ABSTRACT  

In this paper, a new numerical method is presented to approximate the solution of second order one-

dimensional nonlinear wave equation. The method is based on collocation of exponential B-splines. Exponential 

B-splines are applied for spatial variable and derivatives. The method produces two systems of first order 

ordinary differential equations. We solve these systems using strong stability preserving methods. Numerical 

experiments are presented to illustrate the accuracy and efficiency of the proposed method. 
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I. INTRODUCTION 

 

We consider the following one-space dimensional nonlinear hyperbolic partial differential equation: 

 

subject to the initial conditions: 

 

and the boundary conditions: 

 

The numerical solution of second order one space dimensional nonlinear wave equation is of great importance 

in various fields of sciences. Many researchers have studied various numerical techniques for the solution of 

linear and non-linear wave equations. Gao, Chi [1] presented unconditionally stable schemes for one 

dimensional linear hyperbolic equation. Mohanty et al [2]-[6] proposed several methods based on uniform and 

variable mesh for the solution of nonlinear hyperbolic partial differential equations. Many methods based on 
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polynomial slpines have been developed for the solution of equation (1). Recently, Mittal and Bhatia [7] 

presented modified cubic B-spline Differential Quadrature Method for the solution of (1). Not much work based 

on exponential splines has been done. However, it is being stated by McCartin [8], [9] that the exponential 

splines are more general splines. McCartin further stated that cubic splines many times exhibit unwanted 

oscillations in the form of overshoots and/or extraneous inflection points and that exponential splines can 

remedy this situation for appropriately chosen tension parameters. Reza Mohammadi used exponential B-spline 

for solving Convection-Diffusion equations in [10]. We, in this paper, present the collocation method based on 

exponential B-spline basis functions to solve some benchmark nonlinear wave equations. Equation (1) is 

converted into a system of partial differential equations and then exponential B-spline collocation method is 

used to discretize the equations spatially which leads to formulation of two systems of first order ordinary 

differential equations which are then solved by SSP-RK54 [11] and SSP-HBT54 [12] methods respectively. 

The outline of the paper is as follows: In section 2, we discuss exponential B-spline collocation method. In 

section 3, we apply this method to nonlinear hyperbolic wave equations. Numerical experiments are illustrated 

in section 4 and finally concluding remarks are given in section 5. 

 

II. EXPONENTIAL B-SPLINE COLLOCATION METHOD 

 

In exponential B-splines collocation method the approximate solution can be written as a linear combination of 

exponential B-spline basis functions for the approximation space under consideration. We consider a mesh 

 as a uniform partition of the solution domain  by knots  with 

spacing   for  

The exponential B-splines  at the above defined knots together with additional knots are given 

by: 

 

where 

 

 

 

where  is a free parameter. Additional knots are required to define all the exponential splines. The 

set  forms a basis for functions defined over the region . Each basis 
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function  is twice continuously differentiable. The values of  at knots are tabulated in 

Table 1. 

Table 1: Values of exponential B-spline and its derivatives at different knots 

      

 0 

 

1 

 

0 

 
0 

 

0 

 

0 

 
0 

   

0 

     In the collocation method with exponential B-splines, an approximate solution  to the analytical 

solution  can be written in the form: 

 

where  are unknown quantities to be determined from the boundary conditions and collocation form of the 

differential equation (1). In order to eliminate the coefficients  and , we redefine the exponential 

B-spline basis functions as: 

 

      Then, the approximate solution  can be rewritten as the linear combination of redefined exponential 

B-spline basis functions (6) as: 

 

     From equation (7) and Table 1, the approximate values of  and its first and second order derivatives 

are determined in terms of the time parameters  as follows: 

 

where  

 

 

III. NUMERICAL METHOD 

 

We first split equation (1) into system of equations as follows: 
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Then using (7), the approximate values of  and    can be written as: 

 

 

where  is the derivative of  with respect to and  is the derivative of  with respect to . 

Evaluation at the boundary knots: Imposing boundary conditions and using the redefined basis functions (6) 

and Table 1 in (10), we can write system (9) at the boundary knots as: 

 

 

and 

 

 

Evaluation at the internal knots: Using the redefined basis functions (6) and Table 1 in (10) and (11), we can 

write system (9) at the interior knots  as 

 

     Finally, using the definition of basis functions (6) and Table 1, equation (14) can be written as the following 

systems of ordinary differential equations: 

 

which in matrix form can be written as: 

 

where, , ,  , , , 

where,  

and  denotes  for . 

To compute the solution at the required knots, the vector  is to be determined at each time level. We solve 

equation (12a) and (13a) for  and  respectively by SSP-RK54 method, then at each time level   is 
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evaluated from (16) by using tri-diagonal solver. Then the obtained system of equations along with the system 

(17) gives first order ordinary differential equations. We solve the former system for  by SSP-RK54 method 

and the latter for  by SSP-HBT54 method. Consequently, on using (8), the approximate solution  is 

obtained. 

To initiate the computation we need initial vectors,  and  which can be determined by using initial 

conditions (2): 

, , which in matrix form can be written as: 

 

where,  

, ,  and , . 

Now,  is a tri diagonal matrix, hence, equation (18) can be solved for  by tri-diagonal solver. 

Similarly, second initial condition gives 

 , , 

i.e. we have, 

 

Hence, from (19), initial vector  can be calculated. 

 

IV. NUMERICAL EXPERIMENTS 

 

In this section, we present the numerical results of present method on one linear and four nonlinear wave 

equations. We also compare obtained results with the results obtained by existing methods. For all the problems 

we choose . The accuracy of the presented method is measured using  errors, maximum absolute errors 

(MAE) and root mean square errors (RMSE). 

, 

MAE , 

RMSE . 

where  and  denote the exact and approximate solutions respectively. 

Example 1. (Wave equation in polar coordinates) 

 

This equation represents one-dimensional wave equation in cylindrical and spherical coordinates for  and 

2 respectively. The analytical solution is . The initial and boundary conditions can be 

obtained using analytical solution. The maximum absolute errors obtained at different time levels using the 
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proposed method are given in Table 2 for . A comparison between analytical and numerical solution 

upto  for  is done by plotting space time graphs which are given in Fig. 1 and Fig. 2. It is clear from 

the Table and graphs that our method is efficient in approximating the solution of wave equation in polar 

coordinates. 

Table 2: MAE error for example 1 at t=2 with  

 

 

  

 MAE CPU time(in sec) MAE CPU time(in sec) 

0.25 4.3651e-04 1.13 4.7525e-04 1.13 

0.50 5.3182e-04 2.19 6.3619e-04 2.17 

0.75 6.0372e-04 3.22 9.5102e-04 3.23 

1 5.3498e-04 4.31 9.9524e-04 4.24 

 

 

Figure 1: Analytical solution of example 1 for  

 

Figure 2: Numerical Solution of Example 1 for 
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Example 2. (Van der Pol type nonlinear wave equation) 

 

The analytical solution is  The maximum absolute errors obtained at  for 

 and different values of  are given in Table 3. A comparison between analytical solution and 

numerical solution upto  for ,  and  can be done by studying Fig. 3 and Fig. 4. 

It is evident from the figures that our method is efficient in approximating solution of Van der pol type nonlinear 

wave equation. 

Table 3: MAE error for example 2 at  with . 

    

 

3.6000e-03 1.7000e-03 7.2618e-04 

 

9.2084e-04 4.3797e-04 1.8142e-04 

 

2.3184e-04 9.7609e-05 4.4266e-05 

 

5.8628e-05 2.7616e-05 9.9387e-06 

 

 

Figure 3: Analytical Solution of Example 2 for  , ,  
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Figure 4: Numerical Solution of Example 2 for  , ,  

Example 3. (Dissipative non-linear wave equation) 

. 

The analytical solution is . The maximum absolute errors and root mean square errors 

at different times  and ,  are tabulated in Table 4. The results obtained are compared with 

the results obtained by Mittal and Bhatia [7]. Our results are in good agreement with the results obtained in [7]. 

Space-time graphs of analytical and numerical solutions are given in Fig. 5 and Fig. 6 respectively, which also 

confirm the accuracy of the method. 

Table 4: Errors for Example 3 for  =0.05,  

 Our Method Mittal and Bhatia [7] 

 RMSE MAE RMSE MAE 

1 2.0000e-03 2.8000e-03 3.046e-03 4.274e-03 

2 1.9000e-03 2.6000e-03 3.251e-03 4.625e-03 

3 2.8396e-05 3.8175e-05 5.737e-05 9.782e-05 

 

 

Figure 5: Analytical Solution of Example 3 upto  for  
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Figure 6: Numerical solution of example 3 upto  for  

Example 4. (Non-linear wave equation) 

 

The analytical solution is . We report the maximum absolute errors obtained at  for 

 in Table 5. The calculations are carried out for different values of  and . Space-time graphs of 

analytical and numerical solution are also plotted in Fig. 7 and Fig. 8. 

Table 5: MAE for Example 4 at =1 with =0.001 

    

 

7.1000e-03 1.3400e-02 3.5400e-02 

 

1.9000e-03 3.7000e-03 9.8000e-03 

 

6.6791e-04 1.2000e-03 3.3000e-03 

 

3.6757e-04 6.3917e-04 1.7000e-03 
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Figure 7: Analytical Solution of Example 4 for  

 

Figure 8: Numerical Solution of Example 4 for 

Example 5. Consider the following Sine-Gordan equation: 

 

The analytical solution is . This example is solved at different time levels for 

. The results obtained are compared with the results obtained by Dehghan and 

Shokri [13]. It is evident from the Table 6 that our results are in good agreement with the results obtained by 

Dehghan and Shokri [13]. Moreover, the numerical solution obtained for  is compared 

with the analytical solution in Fig. 9 and 10. 

NNNUF 
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Table 6: Errors Calculated for Example 5 for  

 Proposed Method Dehghan and Shokri [13] 

    

  MAE  MAE  MAE 

.25 3.0413e-06 1.0875e-05 1.0875e-05 5.3761e-06 3.91e-05 5.89e-06 

.50 1.2125e-05 4.5317e-05 4.5317e-05 1.4216e-05 1.30e-04 2.01e-05 

.75 2.7560e-05 1.0236e-04 1.0236e-04 3.5439e-05 2.35e-04 3.63e-05 

1 5.4593e-05 2.0372e-04 2.0372e-04 6.0377e-05 3.27e-04 5.07e-05 

 

Figure 9: Analytical Solution of Example 5 for  

 

Figure 10: Numerical Solution of Example 5 for  

V. CONCLUSION 

 

In this paper, an exponential B-spline collocation method has been proposed to solve second order one 

dimensional nonlinear wave equation. The second order problem is first converted into two first order partial 

differential equations. Then, exponential B-spline collocation method is applied to convert these equations into 

two systems of first order ordinary differential equations which are then solved by strong stability preserving 
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five stage, fourth order Runge-Kutta method and Hermite-Birkhoff-Taylor method respectively. This choice of 

methods gives better results compared to the results obtained by using one of them only. The main advantage of 

this method is that because of its simplicity, it is easy to be applied to any linear or nonlinear problem available 

in literature and gives accurate results.  
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