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ABSTRACT 

This paper investigates the flexural vibration of nanobeam based on Eringen’s nonlocal elasticity theory. The 

governing equation for free flexural vibration of nanobeam using Euler- Bernoulli Beam theory has been 

developed to study  the effect of the small- scale parameter on the vibrational frequency. The small- scale 

parameter is taken into consideration by using Eringen’s nonlocal elasticity theory. The analytical solutions are 

obtained for simply supported, clamped- clamped and clamped- hinged end conditions using Galerkin’s method 

of weighted residual. The effect of the nonlocal parameter on the free flexural vibration frequencies is studied. 

The results and the available solutions are compared and the frequencies for all boundary conditions are found 

to be in excellent agreement with existing results. 
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I. INTRODUCTION 

 

There has been spectacular development in nanotechnology recently. Nanobeams have varied Engineering 

applications as components in nano devices, nano- composites, electrical and electromechanical instruments due 

to their good electrical properties and high mechanical strength. During operation often these components may 

be subjected to external loads, which may have an impact on their dynamics characteristics. The response 

characteristics of nanostructures are very different from other micro/ macro structures due to the inherent size 

effect. Hence studies on the vibrational behavior of nanobeams must be carried out  for their rational design  in 

nano devices.  

Farzad Ebrahimi and Parisa Nasirzadeh[2] studied the small- scale effect on the transverse vibrational behavior 

of single- walled carbon nanotubes based on the assumptions of Timoshenko beam theory. Fehmi Najar, et al [3] 

studied the effect of the small- scale parameter on the static and dynamic responses of a Nano-actuator subjected 

to D.C voltage. J.N. Reddy, et al [4] developed non- linear finite element models based on Eringen’s [1] non-

local differential model to obtain numerical results for static bending of nano beam structure. Hassan 

Kananipour, et al [5] conducted a study on the dynamic analysis of nanobeam in polar coordinate system using 

Differential quadrature method (DQM). Milad Hemmatnezhad and Reza Ansari [6] investigated the effects of 

the small scale parameter and thermal effect on the vibration characteristics of double-walled carbon nanotubes 

modelled using Timoshenko beam theory J.V. Ara´ujo dos Santosa and J.N. Reddy [7] studied the influence of 
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rotary inertia and non-local parameter on the fundamental and higher natural frequencies of a Timoshenko 

beam. S. Narendar, et al [8] studied the vibrational behavior of micro/ nano bars by employing strain gradient 

theory.  C.M.C. Roque, et al [9] conducted a study on the bending, buckling and free vibrational response of a 

simply supported Timoshenko nanobeam by employing Eringen’s non-local elasticity theory. Maziar 

Janghorban [10] studied the static and free vibration analysis of carbon nano- wires with rectangular cross-

section based on Timoshenko beam theory using Differential Quadrature method. Payam Soltani, et al [11] 

analysed the effect of waviness on the transverse vibration of single-walled carbon nanotubes. The authors of 

this paper are of the opinion that the studies hereto reported are not sufficient to thoroughly understand the 

effect of small scale parameter and the limitations of classical elastic theory in dealing with the length scale of 

nanobeams.The main objecive of this paper is carry out undamped free flexural vibration of the nanobeam under 

arbitrary boundary conditions by using Galerkin’s method and to study the effect of the nonlocal parameter on 

the vibrational frequencies. 

1.1 Nonlocal elasticity theory 

As for physical interpretation, the nonlocal theory incorporates long range interactions between points in a 

continuum model. Such long range interactions occur between charged atoms or molecules in a solid. Long 

range forces may also be considered to propagate along fibers or laminae in a composite material. The classical 

theory of elasticity (Hooke’s law) excludes these effects. In order to remedy this situation, nonlocal elasticity 

theories were proposed employing the granular nature of materials. The nonlocal elasticity theory is concerned 

with material bodies whose behavior at any interior point depends on the state of all other points in the body. In 

the theory of nonlocal elasticity according to A.Cernal Eringen [1], the stress at a reference point x is considered 

to be a functional of the strain field at every point x' in the body. Thus, the non-local stress tensor    at point x 

is expressed as: 

 

 

Use of this integral constitutive relation is relatively more difficult in computation than using algebraic or 

differential constitutive relations. Realizing this fact, Eringen(1) proposed an equivalent differential model as 

 

 and E are nonlocal stress, a normal strain and Young’s modulus, respectively of small length scale. 

  is the function of material constant 

Material constant  

a = internal characteristic lengths (such as the lattice spacing). 

is called the nonlocal parameter, which is the factor to be incorporated while considering the effect of small 

length scale. 

 

1.2 Galerkin’s Method 

The Galerkin’s method constructs an approximate solution of the given problem.  Each basic function must 

satisfy an admissibility condition appropriate for the problem. The basic functions can be chosen to be weak 

solutions of the Galerkin’s integral representation associated with the given problem. The following steps are 

performed in Galerkin’s method: 
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1. Assume an approximate solution which satisfies the boundary conditions and substitute it in the 

governing equation. This will result in a residue/ error. 

2. Multiply the residual of the governing equation by a weighting function or the assumed solution and set 

the domain integral equal to zero. 

 

II. FORMULATION OF GOVERNING EQUATION 

 

The governing equation for an undamped free flexural vibration of a nanobeam based on the assumptions of 

Euler- Bernoulli beam theory is derived as follows.  

 

 

Fig.1 Equilibrium condition of a differential element of a nanobeam subjected to a uniformly distributed load. 

Force equilibrium in vertical direction: 

          (1) 

Taking moment about O and equating to zero 

            (2) 

Substituting (2) into (1) 

         (3) 

M=            (4a) 

           (4b) 

Non- local constitutive law: 

         (5) 

Substituting (5) into (4), 

         (6) 

From (3), 

 

Equating (3) and (6) 

     (7) 
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Substitute (7) into (2), 

     (8) 

Substituting (8) into (1), 

   (9) 

For free vibration, q=0. Hence we get, 

        (10) 

Put  

       (11) 

Put Y=sinpt 

Substituting in (11) we get, 

        (12) 

Put  and  

         (13) 

 

III. ANALYSIS OF NANO BEAM WITH VARIOUS BOUNDARY CONDITIONS 

3.1 Simply Supported End Conditions 

Boundary conditions are as follows: 

 

   

 

 

 

The function satisfying these boundary conditions is   

Substituting in (13) we get, 

       (14) 

Where R= Residue or error arising due to the assumed solution. To make the error zero, we use Galerkin’s 

method of weighted residual. 
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         (15) 
 

3.2 Clamped- Clamped end Conditions 

Boundary conditions are as follows: 

 

     

 

 

 

The function satisfying these boundary conditions is   

Substituting in (13) we get, 

      (16) 

Using Galerkin’s method, we get, 

 

         (17) 
 

3.3 Clamped- Hinged end Conditions 

Boundary conditions are as follows: 

 

    

   

 

 

The function satisfying these boundary conditions is  

 

Simplifying this function we get,  

Substituting in (13) we get, 
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    (18) 

Using Galerkin’s method we get,  

[  

 

         (19) 

IV RESULTS AND DISCUSSIONS 

 

Undamped free flexural vibration analysis of nanobeams of various spans with different nonlocal parameters has 

been done using Galerkin’s method. The results are tabulated and graphically depicted for the various boundary 

conditions. 

 

4.1 Simply Supported End Condition 

Table 1: Small scale effect on the fundamental frequency for different length scales for simply 

supported end conditions of nanobeam 

eoa Frequency ‘p’ 

L= 5 nm L= 10 nm L= 15 nm L= 20 nm 

0 6.570E+11 1.642E+11 0.730E+11 0.410E+11 

0.50E-9 6.268E+11 1.622E+11 0.726E+11 0.409E+11 

1.00E-9 5.563E+11 1.567E+11 0.714E+11 0.405E+11 

1.50E-9 4.781E+11 1.485E+11 0.696E+11 0.399E+11 

2.00E-9 4.091E+11 1.390E+11 0.673E+11 0.391E+11 

2.50E-9 3.528E+11 1.291E+11 0.646E+11 0.382E+11 

3.00E-9 3.079E+11 1.195E+11 0.618E+11 0.371E+11 

3.50E-9 2.719E+11 1.105E+11 0.588E+11 0.359E+11 

4.00E-9 2.429E+11 1.022E+11 0.559E+11 0.347E+11 

4.50E-9 2.190E+11 0.948E+11 0.531E+11 0.335E+11 

5.00E-9 1.992E+11 0.882E+11 0.504E+11 0.322E+11 
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Fig.2- Small scale effect on the fundamental frequency for different length scales for simply 

supported end conditions of nanobeam 

From this graph it is evident that the non-local fundamental frequency decreases with increasing values of the 

non-local parameter. 

 

4.2 Clamped- Clamped end Condition 

Table 2: Small scale effect on the fundamental frequency for different length scales for 

clamped- clamped end conditions of nanobeam 

E Frequency ‘p’ 

L= 5 nm L= 10 nm L= 15 nm L= 20 nm 

0 1.517E+12 3.793E+11 1.686E+11 0.948E+11 

0.50E-9 1.426E+12 3.732E+11 1.673E+11 0.944E+11 

1.00E-9 1.228E+12 3.566E+11 1.638E+11 0.933E+11 

1.50E-9 1.026E+12 3.332E+11 1.584E+11 0.915E+11 

2.00E-9 8.610E+11 3.070E+11 1.517E+11 0.891E+11 

2.50E-9 7.326E+11 2.810E+11 1.442E+11 0.863E+11 

3.00E-9 6.334E+11 2.566E+11 1.364E+11 0.833E+11 

3.50E-9 5.560E+11 2.347E+11 1.286E+11 0.800E+11 

4.00E-9 4.943E+11 2.152E+11 1.211E+11 0.767E+11 

4.50E-9 4.443E+11 1.981E+11 1.140E+11 0.734E+11 

5.00E-9 4.032E+11 1.831E+11 1.074E+11 0.702E+11 
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Figure 3: Small scale effect on the fundamental frequency for different length scales for 

clamped- clamped end conditions of nanobeam 

 

4.3 Clamped- Hinged End Condition 

Table 3: Small scale effect on the fundamental frequency for different length scales for 

clamped- hinged end conditions of nanobeam 

eoa Frequency ‘p’ 

L= 5 nm L= 10 nm L= 15 nm L= 20 nm 

0 1.971E+12 4.927E+11 2.190E+11 1.231E+11 

0.50E-9 1.816E+12 4.821E+11 2.168E+11 1.225E+11 

1.00E-9 1.507E+12 4.541E+11 2.108E+11 1.205E+11 

1.50E-9 1.222E+12 4.165E+11 2.018E+11 1.174E+11 

2.00E-9 1.005E+12 3.767E+11 1.909E+11 1.135E+11 

2.50E-9 8.450E+11 3.392E+11 1.792E+11 1.089E+11 

3.00E-9 7.248E+11 3.056E+11 1.674E+11 1.041E+11 

3.50E-9 6.327E+11 2.765E+11 1.561E+11 0.991E+11 

4.00E-9 5.604E+11 2.513E+11 1.455E+11 0.941E+11 

4.50E-9 5.024E+11 2.298E+11 1.358E+11 0.893E+11 

5.00E-9 4.550E+11 2.112E+11 1.270E+11 0.848E+11 
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Figure 4: Small scale effect on the fundamental frequency for different length scales for 

clamped- hinged end conditions of nanobeam 

 

4.4 Discussions 

The variation of fundamental frequency for various boundary conditions for different values of the nonlocal 

parameter, and length illustrates the influence of the small scale parameter on the free flexural vibrational 

behavior of nanobeams. Variation of fundamental frequency with length of the nanobeam for different e0a 

values for three boundary conditions is considered in figures 2, 3 and 4. According to these figures it is seen 

that, nonlocal solution of the frequency is smaller than the classical (local) result due to the effect of small 

length scale. Furthermore, increasing the nonlocal parameter decreases the   frequency. The result may be 

interpreted as increasing the nonlocal parameter for fixed ‘L’ leads to a decrease in the stiffness of structure. 

Approximately, for L ≥ 20nm all results converge to the local frequency. Thus it is confirmed that the effect of 

the nonlocal parameter is to decrease the frequency. Also frequency decreases with the increase of the beam 

length L. This is because the wavelength gets larger with increase in beam length. It means nonlocal effects are 

lost after a certain length. This implies that as the length of the nanobeam increases, the nonlocal effect 

decreases and will finally be lost after reaching a certain length value. The effect of the nonlocal parameter in 

decreasing the frequency is more predominant in clamped- clamped end condition when compared with the 

other two boundary conditions. 

 

V. CONCLUSIONS 

 

The above analytical investigations lead to the conclusion that the effect of the increase in nonlocal parameter is 

to decrease the frequency of flexural vibration in nanobeams. The nonlocal effects are very minimal at L=10 nm 

and disappear for greater lengths. The following are noteworthy: 

1) In the case of nanobeams, under free flexural vibration, the nonlocal solution of frequency is smaller than 

the classical result. 

2) The frequency of nanobeams decreases with increase in nonlocal parameter. 
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3) Frequency decreases with increase in the beam length which means that the nonlocal effects are lost after a 

certain length. The nonlocal frequency becomes equal to the classical frequency when the nonlocal 

parameter becomes zero. 
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