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ABSTRACT 

In this paper, undamped free axial vibration of nanobar is investigated using  Eringen’s nonlocal elasticity 

theory. The governing equation for undamped free axial vibration of nanobars is derived using Euler Bernoulli 

beam theory and by introducing Eringen’s nonlocal elasticity theory. The solutions are obtained for clamped-

clamped, clamped-free, and the bar with concentrated end mass boundary conditions. The effect of nonlocal 

parameter on the free axial vibrational frequencies of nanobar is studied. The analytical results and the 

available solutions are compared and the frequencies for all the boundary conditions are in excellent agreement 

with the existing results. 
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I. INTRODUCTION 

 

Carbon nanotubes are discovered by Iijima [1] in 1991. Carbon nanotubes are the strongest and stiffest materials 

in terms of tensile strength and elastic modulus. The studies related with nanostructures have shown that CNTs 

have good electrical properties and high mechanical strength, so they can be used for nanoelectronics, 

nanodevices and nanocomposites [2].  

C. M. Wang et al. [3] reviews recent research studies on the buckling of carbon nanotubes. The structure and 

properties of carbon nanotubes are introduced. The various buckling behaviours exhibited by carbon nanotubes 

are also presented. It also found that CNTs have the remarkable flexibility and stability under external loading. 

S.Adhikari et al. [4] studied the Free and forced axial vibrations of damped nonlocal rods using dynamic finite 

element method. Helong wu [5] investigated the free vibration and elastic buckling of sandwich beams with a 

stiff core and functionally graded carbon nanotube reinforced composite (FG-CNTRC) face sheets within the 

framework of Timoshenko beam theory. Metin Aydogdu [6] developed the Nonlocal elastic rod model and 

applied it to investigate the small scale effect on axial vibration of the nanorods. [7] In this study generalized 

non local beam theory is proposed to study bending, buckling free vibrations of nanobeams. Nonlocal 

constitutive equations of Eringen are used in the formulations. J.N. Reddy, et al. [8] developed non- linear finite 

element models based on Eringen’s [9] non-local differential model to obtain numerical results for static 

bending of nanobeam Structures. Hassan Raffaele Barretta [10] proposed the variational formulation of the 

nonlocal elastostatic problem to study the small-scale effects in nanorods. Chawis Thongyothee et al. [11] 

investigated the free vibration analysis of single-walled carbon nanotubes including the effect of small length 
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scale based on the nonlocal elasticity theory. Q.Wang, K.M.Liew [12] investigated The Scale effects on static 

deformation of micro and nanorods or nanotubes. The nonlocal Euler-Bernoulli beam theory and Timoshenko 

beam theories are used. As studied earlier, the nanobars have varied engineering applications as components in 

nano devices, nano- composites, electrical and electromechanical instruments due to their good electrical 

properties and high mechanical strength. During operation often these components may be subjected to external 

loads, which may have an impact on their dynamics characteristics. The response characteristics of 

nanostructures are very different from other micro/ macro structures due to the inherent size effect. Hence 

studies on the vibrational behavior of nanobars must be carried out for their rational design in nano devices The 

authors of this paper are of the opinion that the studies here to reported are not sufficient to thoroughly 

understand the effect of small scale parameter and the limitations of classical elastic theory in dealing with the 

length scale of nanobars. The main objective of this paper is to carry out undamped free axial vibration of the 

nanobars under arbitrary boundary conditions using nonlocal elasticity theory and to study the effect of the 

nonlocal parameter on the vibrational frequencies. 

 

II. NONLOCAL ELASTICITY THEORY 

 

In the analysis of macro beams, the classical theory of elasticity is used. But when the small scale/ nanoscale 

(e.g. CNT) is taken into account, the classical theory does not hold good. Hence the Nonlocal elasticity theory 

which was proposed by Eringen is adopted to account for small scale effect in elasticity by assuming the stress 

at a reference point to be a functional of the strain field at every point in the body [9]. In this way, the internal 

size scale could be considered in the constitutive equations simply as a material parameter. The application of 

nonlocal elasticity, in micro and nano materials, has received much attention among the nanotechnology 

community recently. This important length scale effect is used in vibration, buckling and bending of CNTs 

studies. The application of nonlocal elasticity is recommend in revealing scale effects for nano-materials like 

CNTs.  

ccording to Eringen, the nonlocal stress tensor  at point X is expressed as 

 

Use of integral constitutive relations is relatively more difficult in computation than using algebraic or 

differential constitutive relations. Realizing this fact Eringen proposed an equivalent differential model as 

 

           is the function of material constant, 

 material constant  

            a = internal characteristic lengths (such as the lattice spacing). 

In general,  is called the nonlocal parameter which is a factor to consider the effect of small length scale. 
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III. FORMULATION OF GOVERNING EQUATION 

 

The governing equation for an undamped free axial vibration of a nanobar using nonlocal elasticity theory is 

derived on the assumptions of the Euler Bernoulli beam theory. 

 

           

Fig.1 Equilibrium Condition of a Differential Element of a Nanobar Subjected to the Axial 

Force. 

Force equilibrium along horizontal direction, 

-NL+ ( NL +  dx ) - m    dx = 0 

                        (1) 

Nonlocal constitutive law 

 τxx = E                  (2) 

For local,  

NL
     

 =   dA                  (3) 

For nonlocal, 

N = ∫  dA                              (4) 

Integrating (2) w.r.to area, 

 τxx dA =  dA 

 N    = NL            
  
            (5) 

Diff (5) w.r. to x, 

                      (6) 

Substitute (1) in (6), we get 

 

Governing equation for the axial vibration of the nanobars 
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                       (7) 

Solution for the harmonic vibration 

Let                        (8) 

Substitute (8) into (7) 

 

Let                                                                                                                                                       (9)                                                                                                                                          

k = dimensionless frequency parameter 

 

                                                                                                                                                  (10) 

 

The solution is                                    (11) 

 

IV. ANALYSIS OF NANOBAR WITH VARIOUS BOUNDARY CONDITIONS 

4.1 Clamped – Clamped 

 

The solution is  

Boundary conditions 

  

       A=0                      (12) 

(ii)       

       B                         (13) 

To satisfy (13),  can be chosen as  

                                                                                                                                                          (14) 

Substituting (10) in (14) ,we get 

 

solving we get, 
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4.2 Clamped  Free 

 

Boundary conditions 

  

       A= 0                                                                                        (15) 

 

            (16) 

To satisfy (16),  

Solving we get 

 

 

 

4.3 Bar with Free Concentrated End Mass 

 

The solution is   

Boundary conditions 

(i)  

       A= 0 

 

(ii)  At x = l 
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If m is very small compared to the beam mass (m =  

   (if m = 0) 

Choosing , where n =1,3,5 ......... 

When n=1 

 =  

 

 

 

V. RESULTS AND DISCUSSIONS 

 

Frequency analysis has been done for nanobars of various spans with different nonlocal parameters, lengths and 

mode numbers. The results are graphically depicted for various boundary conditions. 

 

5.1 Results 
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Fig 2. Small Scale Effect on Clamped-Clamped Nanobar at Different Scale Coefficients for 

Fundamental Frequency 
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Fig 3.Small Scale Effect on Clamped-Clamped Nanobar for First Three Frequencies 

 

Fig 4.Small Scale Effect on Clamped-Free Nanobars at Different Scale Coefficients for 

Fundamental Frequency 
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Fig 5. Small Scale Effect on Clamped-Free Nanobar for First Three Frequencies 

 

 

Fig 6. Small Scale Effect on Bar with Concentrated End Mass at Different Scale Coefficients for 

Fundamental Frequency. 
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Fig 7. Small Scale Effect on Bar with Concentrated End Mass for Three Frequencies. 

 

5.2 Discussions 

The ratio of local frequency to nonlocal frequency is discussed for various boundary conditions for different 

scale coefficients, lengths and mode numbers to illustrate the influence of small length scale on the undamped 

axial vibration of nanobars. Variation of fundamental frequency parameter with length of rod is given for 

different scale coefficients e0a for three boundary conditions considered in Figs. 2, 4, 6. From these figures it is 

evident that, nonlocal solution of the frequency is smaller than the classical result due to the effect of small 

length scale. Increasing the nonlocal parameter decreases the frequency (i.e. increases frequency ratio).The 

result may be interpreted as increasing the nonlocal parameter for fixed L leads to a decrease in the stiffness of 

structure. For L ≥ 20nm all results converge to the local frequency. Frequency ratio decreases with the increase 

of the rod length L. It means nonlocal effects are lost after a certain length. e0a = 0 corresponds to classical 

solution where ratio of classical frequency to nonlocal frequency equals to unity. 

In figures 3, 5, 7, the three frequency parameters are depicted for e0a = 1 nm for C–C, C–F, Bar with free 

concentrated end mass boundary conditions, respectively. Effect of small length scale is higher for higher 

modes. Nonlocal effects are lost almost at L = 10 for n = l, but same effects disappear at nearly L = 25 for n = 3. 

This is because of small wavelength effects for higher modes. 

 

VI. CONCLUSIONS 

 

The above analytical investigations lead to the conclusion that the effect of the increase in nonlocal parameter is 

to decrease the frequency of axial vibration in nanobars. The nonlocal effects are very minimal at L=10 nm and 

disappear for greater lengths. The followings are noteworthy 

• In the case of nanobars under undamped axial vibration, the nonlocal solution of frequency is smaller than 

the classical result. 

• The frequencies of nanobars decreases with increase in nonlocal parameter. 
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• Frequency Ratio decreases with increase  in the bar length which means that the  nonlocal effects are lost 

after a certain length. 

• Ratio of classical frequency to nonlocal frequency tends to unity when nonlocal parameter tends to zero. 

• Effect of small length scale is higher for higher modes. 
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