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ABSTRACT

Alzaatreh, et al. (2012) proposed a new family of distributions called Transformed-Transformer family (or T-X
family). In this paper a new combination of T-X family is proposed. Two standard probability models Pareto
and Rayleigh are used to define a new T-X family called Pareto — Rayleigh model and is considered as a Life —
testing model. The problem of acceptance sampling when the life test is truncated at a pre-assigned time is
discussed with known shape parameters. For various acceptance numbers, confidence levels and values of the
ratio of the fixed experimental time to the specified mean life, the minimum sample size necessary to assure a
specified mean life time worked out. The operating characteristic functions of the sampling plans and
producer’s risk are derived. The ratio of true mean life to a specified mean life that ensures acceptance with a

pre-assigned probability are tabulated. The results are presented by an example.

Key Words: T-X family, Pareto - Rayleigh model, Operating Characteristic function, Sampling
plans, truncated life tests.

I INTRODUCTION

Let F(x) be the cumulative distribution function (CDF) of any random variable X and r(t) be the probability
density function (PDF)of a random variable, T, defined on [0,z0). The CDF of the T-X family of distributions

defined by Alzaatreh, et al. [1] (2012) is given by

log[1-F (x)]

G(X) = jo' r(t)dt @)

Alzaatreh, et al. [1] (2012) named this family of distributions as the Transformed-Transformer family (or T-X

family). If a random variable T follows the Pareto distribution type IV with parameter « then

o P —(a+1)
rt,a, o) = —I:l+—}
o o

—(a+1) |

:a[l+t] p t>0,0>1,0=1 )
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If a random variable X follows the Rayleigh distribution with parameter ¢ then
F(x) =1-e X%, x>0,06>0 (©))

Using (1), (2) and (3), we obtain a new T-X family of distribution called Pareto-Rayleigh distribution (P-R
distribution) and its CDF is given by

2

X
G(x) =1-|1+
(x) { -

} i Xx>0,aa>1,0>0 (4)

The probability density function (pdf) corresponding to (4) is

2

-a-1
g(x):%x{H XZ} ; Xx>0,a>1,0>0 )
o 20

where « is shape parameter and o is scale parameter.

Acceptance sampling is considered with inspection and decision making regarding lots of product and
constitutes one of the oldest techniques in quality assurance. A typical application of acceptance sampling is as
follows: a company receives a shipment of product from a vendor. This product is often a component or raw
material used in the company’s manufacturing process. A sample is taken from the lot, the relevant quality
characteristic of the units in the sample is inspected. On the basis of the information in this sample, a decision is
made regarding lot disposition. Usually, this decision is either to accept or to reject the lot. Some times we refer
to this decision as lot sentencing. Accepted lots are put into production, while rejected lots may be returned to
the vendor or may be subjected to some other lot disposition action. While it is customary to think of acceptance
sampling as receiving inspection activity, there are also other uses. For example, frequently a manufacturer
samples and inspects its own product at various stages of production. Lots that are accepted are sent forward for

further processing, while rejected lots may be reworked or scrapped.

The purpose of acceptance sampling is to sentence lots, but not to determine lot quality for example by an
estimation procedure. Thus, most acceptance sampling plans are not designed and, hence, are not appropriate for
estimation purposes. This is a surprising and somewhat alarming fact, because deciding on a lot without
knowing its quality seems to be rather hazardous. Therefore, we will develop a procedure for determining the

value of the relevant quality characteristic in order to make the required decision.

A sampling inspected plans in the case that the sample observations are lifetimes of products put on test aims at

verifying that the actual population average exceeds a required minimum. The population average stands for the

average lifetime of the product, say, . If £, is a specified minimum value then one would like to verify

that 42 > 4, , this means that the true unknown population average lifetime of the product exceeds the specified
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value. On the basis of a random sample of size n, the lot is accepted if 4> 4, . Otherwise the lot is rejected. If
the observed number of failure is large, say larger than a number c, the derived lower bound is smaller than ¢,

and the hypothesis £ 2> 14, is not verified. Hence, the lot cannot be accepted. Such a sampling plan is named

reliability test plan or acceptance sampling plans based on life tests.

Such a procedure obviously requires the specification of the probability model governing the life of the
products. Exponential distribution-the CFR model is the central distribution in reliability studies. Epstein [2]
(1954) developed reliability test plans for exponential distribution. Sobel and Tischendrof [3] (1959) proposed
acceptance sampling with new life test objectives. Sobel Gupta and Groll [4] (1961) constructed sampling plans
similar to those of Epstein [2] (1954) based on Gamma distribution. Sampling plans similar to those of Gupta
and Groll [4] (1961) are developed by Kantam and Rosaiah [5] (1998) for half-logistic distribution and Kantam
et al. [6] (2001) for log-logistic distribution, Rosaiah and Kantam [7] (2005) for the inverse Rayleigh
distribution, Srinivasa Rao et al. [8] (2009) for Marshall-Olkin extended Lomax distribution, Rosaiah et al. [9]
(2009) for Pareto distribution, Subba Rao et al. [10] (2013) developed acceptance sampling on Life Tests:
Exponentiated Pareto Model and Subba Rao et al. [11] (2014) for Size Biased Lomax Model. Some related
works on Pareto and Pareto-Rayleigh model are studied by Subba Rao et al. [12] (2013) percentiles of Range —
Pareto Type model, Subba Rao et. al. [13] (2015) modified maximum likelihood estimation and Prasad and

Kantam [14] (2015) studied a test procedure to discriminate between probability models.

In the present paper it is assumed that the probability distribution of a life time random variable is Pareto-
Rayleigh distribution with known shape parameters. The problem considered is that of finding the minimum
sample size necessary to assure a certain average life when the life test is terminated at a pre-assigned time t and
when the observed number of failures does not exceed a given acceptance number. The decision procedure is to
accept a lot only if the specified average life can be established with a pre-assigned high probability p*, which
provides the protection to the consumer. The decision to accept the lot can take place only at the end of time t
and only if the number of failures does not exceed the given acceptance number c. The life test experiment gets
terminated at the time at which (c+1)" failure is observed or at the end of time t whichever is earlier. In the first

case the decision is to reject the lot.

In section 2, we have obtained the minimum sample sizes necessary for various acceptance numbers - ¢, for
various confidence levels - p* and various ratios of the test time-t to the specified average life oo using
cumulative Binomial probabilities and cumulative Poisson probabilities for Pareto-Rayleigh distribution with
known shape parameters (a = 2, 3, 4, o = 1). Section 3 deals with the operating characteristic and producer’s risk
of the sampling plans. The results are observed for a = 2, 3, 4, o = 1 and presented for ¢ =2, o =1 due to the
space constraints. The use of the numerical tables is described through an illustration in Section 4 and the results

are explained by an example in Section 5.
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Il RELIABILITY TEST PLAN
A common practice in life testing is to terminate a life test by a predetermined time t and observe the number of

failures (assuming that a failure is well-defined). One of the objectives of these experiments is to set a lower
confidence limit on the average life. It is then desired to establish a specified average life with a given
probability of at least p*. The decision to accept the specified average life occurs if and only if the number of
observed failures at the end of the fixed time t does not exceed a given number ¢ — called the acceptance
number. The test may get terminated before the time t is reached when the number of failures exceeds ¢ — the
decision then being to reject the specified average life. For such a truncated life test and the associated decision

rule, we are interested in obtaining the smallest sample size necessary to achieve the objective.
A sampling plan consists of

» the number of units n on test,
» an acceptance number ¢ such that if ¢ or fewer failures occur during the test time t, the lot is accepted
and

> aratio t/oy Where oy is the specified average life.
We fix the consumer’s risk the probability of accepting a bad lot (the one for which the true average life is
below the specified life py) not to exceed 1-p*, so that p* is a minimum confidence level with which a lot of true
average life below gy is rejected by the sampling plan. For a fixed p* our sampling plan is characterized by
(n,c,t/ 00). Here we considered a lot of infinitely large size. Mathematically, given a number p* (0<p*<1), a

value gy of o and an acceptance number c, we want to find the smallest positive integer n such that

C

> (n, ) (1-p)" <1-p* 6)

i=0

where p = F(t;a0) given by Equation (4). Since Equation (4) depends only on the ratio #/o, the experiment needs

to specify only this ratio. If the number of observed failures before t is less than or equal to ¢, from (6) we obtain
F(t;o)<F(;0,) < o020,

That is, the true average life is more than the specified average and the lot is accepted as a good lot. The
minimum values of n satisfying the inequality (6) have been obtain for p* = 0.75, 0.90, 0.95, 0.99 and #/ g¢ =
0.628, 0.942, 1.257, 1.571, 2.356, 3.141, 3.927, 4.712. The results are presented in Table 1 fora=2and o = 1.

If p = F(t; o) is small and n is large (as is true in some cases of our present work), the binomial probability is

approximated by Poisson probability with parameter 1 = np so that the equation (6) can be written as

c e—lli N
55 jﬂ' g 0

i=0
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where 1 = n F(t;6). The minimum values of n satisfying the inequality (7) have also been obtained for the same

combination of p*, #/ oy as those used in inequality (6) and are given in Table 2 for a =2 and o = 1.
2.1 Operating Characteristic function of Sampling Plan

The operating characteristic of the sampling plan (n, ¢, #/ao) gives the probability of accepting the lot. It can be
seen that operating characteristic is an increasing function of . For given p*, ¢/ oy, the choice of ¢ and n will be
made on the basis of operating characteristics. Values of operating characteristics as a function of ¢/ g for a few

sampling plans for selective value of ¢ = 2 from Table 1 are calculated and are given in Table 3.

For a given value of the producer’s risk say 0.05, one may be interested in knowing what value of ¢/ oy will
ensure producer’s risk less than or equal to 0.05, if a sampling plan under discussion is adopted. It should be
noted that the probability p may be obtained as a function of o/ g, as p = F(¢/0) = F[(¢/ 00)/ (0¢/ 6)]. The value
o/0y is the smallest positive number for which the following inequality holds;

C

i n-i
- >
iZ_O:(nci)p (1-p)" 2095 @
For a given sampling plan (n, c, t/oy) at specified confidence level p* (i.e., consumer’s risk (1-p*), we have

computed the minimum values of ¢/0, satisfying the inequality (8) and are given in Table 4.
111 TABLES DESCRIPTION

By assuming the lifetime models as Pareto-Rayleigh model with a = 2, 6 = 1 and that the experimenter is
interested in establishing that the true unknown average life is at least 1000 hours with confidence p* = 0.75. It
is desired to stop the experiment at t = 628 hours. Then, for an acceptance number ¢ = 2, the required n in Table
1is 12. If, during 628 hours, no more than 2 failures out of 12 are observed, then the experimenter can assert,
with a confidence level of 0.75 that the average life is at least 1000 hours. If the Poisson approximation to

Binomial probability is used, the value of n = 13 is obtained from Table 2 for the same situation.

In general, all the values of n tabulated by us are found to be less than the corresponding values of n tabulated in

Kantam et. al. [5] (2001) for log-logistic model.

For the sampling plan (n =12, ¢ = 2, t/oy = 0.628) and confidence level p* = 0.75 under Pareto-Rayleigh

distribution with a = 2 and o = 1 the values of the operating characteristic function from Table 3 are as follows:

olog 2 4 6 8 10 12

L(p) 0.9093 0.9974 0.9997 1.000 1.000 1.000
The above values show that if the true mean life time is twice the required mean life time (o/0y = 2) the

producer’s risk is approximately 0.0907. The producer’s risk is 0.003 when the true mean life is 6 times or more

the specified mean life (/04 = 6).
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From Table 4, we can get the values of the ratio o/o, for various choices of ¢, /oy in order that the producer’s
may not exceed 0.05. For example if p* = 0.75, / 6o = 0.628, ¢ = 2, table 4 gives a reading of 2.28. This means
the product can have an average life of 2.28 times the required average life time in order that under the above
acceptance sampling plan the product is accepted with probability of at least 0.95. The actual average life time

necessary to accept 95 percent of the lot is provided in Table 4.

3.1 Discussion of results through an example

Consider the following ordered failure times of the release of a software given in terms of hours from starting of
the execution of the software up to the time at which a failure of the software is occurred Wood [15]. This data
can be regarded as an ordered sample of size n = 10 with observations: 519, 968, 1430, 1893, 2490, 3058, 3625,
4422, 5218 and 5823.

Let the required average life time be 1000 hours and the testing time be t = 628 hours, this leads to rate of #/0, =
0.628 with a corresponding sample size n = 10 and an acceptance humber ¢ = 1, which are obtained from Table
1 for p* = 0.90. Therefore, the sampling plan for the above sample data is (n = 10, ¢ = 1, #/oo = 0.628). For this
sampling plan, based on the above 10 sample observations, we have to decide whether to accept the product or
reject it. We accept the product only if the number of failures before 628 hours is less than or equal to 1.
However, the confidence level is assured by the sampling plan only if the given life times follow Pareto-
Rayleigh distribution. In order to confirm that the given sample is generated by lifetimes following at least
approximately the Pareto-Rayleigh distribution, we have compared the sample quantiles and the corresponding
population quantiles and found a satisfactory agreement. Thus, the adoption of the decision rule of the sampling
plan seems to be justified. In the sample of 10 units, we noticed only one failure at 519 hours before t = 628

hours. Therefore we accept the product.

Table 1

Minimum sample size for the specified ratio t/ o, confidence level p*, acceptance
number ¢, a =2, o =1 using the Binomial approximation.

P* | ¢ | t/0,=0.628 0.942 1.257 1571 2356 3.141 3.927 4.712

075 0 4 2 2 1 1 1 1 1
1 9 5 3 3 3 2 2 2
2 12 7 5 4 4 3 3 3
3 16 9 7 6 6 4 4 4
4 20 11 8 7 7 5 5 5
5 24 13 10 8 8 6 6 6
6 27 16 11 10 10 7 7 7
7 31 18 13 11 11 8 8 8
8 35 20 15 12 12 9 9 9

9 38 22 16 14 14 11 10 10

10 42 24 18 15 15 12 11 11
09 |0 7 4 2 2 1 1 1 1
1 12 6 4 4 3 2 2 2
2 16 9 6 5 4 3 3 3
3 21 11 8 6 5 5 4 4
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4 25 14 10 8 6 6 5 5
5 29 16 11 9 7 7 6 6
6 33 18 13 11 9 8 7 7
7 37 20 15 12 10 9 9 8
8 41 23 16 13 11 10 10 9
9 45 25 18 15 12 11 11 10
10 49 27 20 16 13 12 12 11
095| 0 9 5 3 2 2 1 1 1
1 14 8 5 4 3 3 2 2
2 19 10 7 6 4 4 3 3
3 24 13 9 7 5 5 5 4
4 28 15 11 9 7 6 6 5
5 32 18 12 10 8 7 7 6
6 37 20 14 12 9 8 8 7
7 41 22 16 13 10 9 9 9
8 45 25 18 14 11 10 10 10
9 49 27 19 16 12 11 11 11
10 53 29 21 17 14 12 12 12
099 0 13 7 4 3 2 2 2 1
1 19 10 7 5 4 3 3 3
2 25 13 9 7 5 4 4 4
3 30 16 11 9 6 5 5 5
4 35 18 13 10 7 7 6 6
5 40 21 15 12 9 8 7 7
6 44 24 16 13 10 9 8 8
7 49 26 18 15 11 10 9 9
8 53 29 20 16 12 11 10 10
9 57 31 22 18 14 12 11 11
10 62 33 24 19 15 13 13 12
Table 2

Minimum sample size for the specified ratio t/ay, confidence level p*, acceptance
number ¢, =2, o =1 using the Poisson approximation.

p* c | t0,=0.628 0.942 1257 1571 2356 3.141 3927 4712

075 | 0 5 3 3 2 2 2 2 2
1 9 6 4 4 3 3 3 3
2 13 8 6 5 5 5 4 4
3 17 10 8 7 6 6 6 6
4 21 13 10 8 7 7 7 7
5 25 15 11 10 8 8 8 8
6 29 17 13 11 10 9 9 9

7 33 19 15 13 11 10 10 10

8 36 21 16 14 12 12 11 11

9 40 23 18 15 13 13 13 12

10 44 26 19 17 15 14 14 14
0.9 0 8 5 4 3 3 3 3 3
1 13 8 6 5 5 5 4 4
2 18 11 8 7 6 6 6 6
3 23 13 10 9 8 7 7 7
4 27 16 12 10 9 9 9 9

5 31 18 14 12 10 10 10 10

6 35 21 16 14 12 11 11 11
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7 39 23 18 15 13 13 12 12
8 43 25 19 17 14 14 14 14
9 47 28 21 18 16 15 15 15
10 51 30 23 20 17 16 16 16
095 | 0 10 6 5 4 4 4 4 4
1 16 10 7 6 6 5 5 5
2 21 13 10 8 7 7 7 7
3 26 15 12 10 9 8 8 8
4 31 18 14 12 10 10 10 10
5 35 21 16 14 12 11 11 11
6 40 23 18 15 13 13 13 12
7 44 26 20 17 15 14 14 14
8 48 28 21 19 16 15 15 15
9 52 31 23 20 17 17 16 16
10 57 33 25 22 19 18 18 18
099 | O 16 9 7 6 5 5 5 5
1 22 13 10 9 8 7 7 7
2 28 17 13 11 10 9 9 9
3 34 20 15 13 11 11 11 11
4 39 23 17 15 13 12 12 12
5 44 26 20 17 15 14 14 14
6 49 29 22 19 16 15 15 15
7 53 31 24 21 18 17 17 17
8 58 34 26 22 19 18 18 18
9 63 37 28 24 21 20 20 19
10 67 39 30 26 22 21 21 21
Table 3

Values of the operating characteristic function of the sampling plan (n, c, t/ o) for given

confidence level p* with a=2, o = 1.

p* n|C tlo, | oloy =2 4 6 8 10 12
0.75 | 12 | 2 | 0.628 0.9093 0.9974 0.9997 1.0000 1.0000  1.0000
7 | 2| 0942 0.8692 0.9955 0.9995 0.9999 1.0000 1.0000
5 | 2| 1257 0.8334 0.9933 0.9993 0.9999 1.0000 1.0000
4 | 2| 1571 0.8019 0.9906 0.9989 0.9998 0.9999  1.0000
4 | 2 | 2.356 0.4344 0.9348 0.9906 0.9980 0.9994  0.9998
3| 2| 3141 0.4890 0.9281 0.9884 0.9974 0.9992  0.9997
3 |2 | 3927 0.3108 0.8384 0.9667 0.9916  0.9974  0.9990
3 12| 4712 0.1961 0.7235 0.9281 0.9795 0.9932 0.9974
09 |16 | 2 | 0.628 0.8236 0.9937 0.9994 0.9999 1.0000 1.0000
9 | 2| 0942 0.7650 0.9901 0.9989 0.9998 0.9999  1.0000
6 | 2 | 1.257 0.7394 0.9875 0.9986  0.9997 0.9999  1.0000
5 12| 1571 0.6546 0.9788 0.9975 0.9995 0.9999  1.0000
4 | 2| 2.356 0.4344 0.9348 0.9906 0.9980 0.9994  0.9998
3|2 3141 0.4890 0.9281 0.9884 0.9974 0.9992  0.9997
3 | 2| 3927 0.3108 0.8384 0.9667 0.9916 0.9974  0.9990
3| 2| 4712 0.1961 0.7235 09281 0.9795 0.9932 0.9974
095 | 19 | 2 | 0.628 0.7493 0.9897 0.9989 0.9998 0.9999  1.0000
10 | 2 | 0.942 0.7086 0.9864 0.9985 0.9997 0.9999  1.0000
7 | 2| 1257 0.6410 09795 0.9976 0.9995 0.9999  1.0000
6 | 2| 1571 0.5113 0.9620 0.9952  0.9990 0.9997  0.9999
4 | 2| 2.356 0.4344 0.9348 0.9906 0.9980 0.9994  0.9998
4 | 2| 3141 0.1816 0.8022 0.9614 0.9906 0.9971  0.9989
3 |2 | 3927 0.3108 0.8384 0.9667 0.9916 0.9974  0.9990
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3|2 4712 0.1961 0.7235 0.9281 0.9795 0.9932 0.9974
099 [ 25 | 2 | 0.628 0.5940 0.9781 0.9975 0.9995 0.9999  1.0000
13 | 2 | 0.942 0.5400 0.9711 0.9966 0.9993 0.9998  0.9999
9 | 2| 1257 0.4558 0.9573 0.9947 0.9989 0.9997  0.9999
7 | 2| 1571 0.3857 0.9402 0.9921 0.9984 0.9995 0.9998
5 12| 2356 0.2329 0.8698 0.9788 0.9952 0.9986  0.9995
4 | 2| 3.141 0.1816 0.8022 0.9614 0.9906 0.9971  0.9989
4 | 2 | 3.927 0.0695 0.6177 0.8990 0.9714 0.9906 0.9964
4 | 2 | 4712 0.0268 0.4344 0.8021 0.9348 0.9765 0.9906
Table 4

Minimum ratio of true gand required o, for the acceptability of a lot with
producer’s risk of 0.05 for a=2, o =1

P* | C | t/op=0.628 0.942 1.257 1571 2356 3.141 3.927 4.712
075 | 0 | 554 587 7.83 6.90 1034 13.78 29.11 20.68
075 | 1 | 3.06 331 324 405 454 6.05 1041 9.08
075 | 2 | 2.28 250 268 284 328 438 6.60 6.56
0.75| 3 | 2.02 215 241 269 345 362 711 543
0.75| 4 |1.87 195 207 231 299 318 576 477
0.75| 5 | 1.78 182 200 206 269 288 490 432
0.75| 6 | 1.67 180 182 209 247 267 429 4.00
075 | 7 | 1.62 172 180 194 230 250 385 3.76
075 | 8 | 1.58 166 178 181 217 237 350 3.56
075 9 | 153 161 168 185 206 275 322 340
07510151 157 168 176 197 263 365 3.26
090 | 0 | 733 831 783 9.78 1034 13.78 17.23 20.68
090 | 1 |3.56 3.67 388 484 607 6.05 757 9.08
090 | 2 | 2.67 290 3.02 335 426 438 547 6.56
090 | 3 | 235 243 265 269 345 460 453 543
090 | 4 | 213 227 243 258 299 399 397 477
090 | 5 |1.98 208 215 229 269 358 360 4.32
090 | 6 |1.87 195 208 227 283 329 334 4.00
090 | 7 |1.80 18 202 210 262 3.07 383 3.76
090 | 8 |1.74 183 188 196 247 289 361 3.56
090 | 9 | 169 176 185 198 234 275 343 340
090 | 10 | 1.65 171 183 188 223 263 328 3.26
095 | 0 | 832 929 960 9.78 1467 13.78 17.23 20.68
095 | 1 |3.86 430 442 484 607 809 757 9.08
095 | 2 | 293 3.09 333 378 426 567 547 6.56
095 | 3 | 253 269 286 302 345 460 575 543
095 | 4 | 2.26 237 260 282 346 399 498 477
095 | 5 | 2.09 224 229 250 3.09 358 448 432
095 | 6 | 2.00 209 219 244 283 329 411 4.00
095 | 7 |1.90 197 212 225 262 3.07 383 4.60
095 | 8 |1.83 193 206 210 247 289 361 433
095 | 9 |1.77 185 193 210 234 275 343 412
09510173 179 190 199 245 263 328 394
099 | 0 | 10.00 11.00 11.09 11.99 1467 19.56 24.45 20.68
099 | 1 |452 485 534 552 726 809 1012 1214
099 | 2 |3.39 358 387 416 501 567 7.09 851
099 | 3 | 285 3.03 325 358 403 460 575 6.90
099 | 4 | 255 264 289 304 346 462 498 5098
099 | 5 | 236 246 266 286 344 412 448 537
099 | 6 | 2.20 233 240 259 313 377 411 493
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099 | 7 | 2.10 219 230 252 290 350 383 4.60

099 | 8 | 201 212 222 235 272 329 361 433

099 | 9 | 193 202 215 231 278 311 343 412

0.99 | 10 | 1.89 195 210 219 264 297 371 394
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