
 
 

427 | P a g e  
 

ACCEPTANCE SAMPLING BASED ON LIFE TESTS:  

PARETO-RAYLEIGH MODEL 
 

R. Subba Rao
1
, G.Prasad

2
 , R.R.L.Kantam

3 

 
1
Shri Vishnu Engg. College for Women, Bhimavaram-534202, (India) 

2
Department of Statistics, Aditya Degree College, Rajahmundry, (India) 

3
Dept. of Statistics, Acharya Nagarjuna University, Nagarjuna Nagar-522 510, (India) 

 

ABSTRACT 

Alzaatreh, et al. (2012) proposed a new family of distributions called Transformed-Transformer family (or T-X 

family). In this paper a new combination of T-X family is proposed. Two standard probability models Pareto 

and Rayleigh are used to define a new T-X family called Pareto – Rayleigh model and is considered as a Life – 

testing model. The problem of acceptance sampling when the life test is truncated at a pre-assigned time is 

discussed with known shape parameters. For various acceptance numbers, confidence levels and values of the 

ratio of the fixed experimental time to the specified mean life, the minimum sample size necessary to assure a 

specified mean life time worked out. The operating characteristic functions of the sampling plans and 

producer’s risk are derived. The ratio of true mean life to a specified mean life that ensures acceptance with a 

pre-assigned probability are tabulated. The results are presented by an example. 

Key Words: T-X family, Pareto - Rayleigh model, Operating Characteristic function, Sampling 

plans, truncated life tests.  

I INTRODUCTION 

Let F(x) be the cumulative distribution function (CDF) of any random variable X and r(t) be the probability 

density function (PDF)of a random variable, T, defined on [0, ). The CDF of the T-X family of distributions 

defined by Alzaatreh, et al. [1] (2012) is given by 
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Alzaatreh, et al. [1] (2012) named this family of distributions as the Transformed-Transformer family (or T-X 

family). If a random variable T follows the Pareto distribution type IV with parameter α then  
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If a random variable X follows the Rayleigh distribution with parameter σ then 

2 2/2( ) 1 ; 0, 0xF x e x                                                        (3) 

Using (1), (2) and (3), we obtain a new T-X family of distribution called Pareto-Rayleigh distribution (P-R 

distribution) and its CDF is given by  
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The probability density function (pdf) corresponding to (4) is  
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where α is shape parameter and σ is scale parameter.  

Acceptance sampling is considered with inspection and decision making regarding lots of product and 

constitutes one of the oldest techniques in quality assurance. A typical application of acceptance sampling is as 

follows: a company receives a shipment of product from a vendor. This product is often a component or raw 

material used in the company’s manufacturing process. A sample is taken from the lot, the relevant quality 

characteristic of the units in the sample is inspected. On the basis of the information in this sample, a decision is 

made regarding lot disposition. Usually, this decision is either to accept or to reject the lot. Some times we refer 

to this decision as lot sentencing. Accepted lots are put into production, while rejected lots may be returned to 

the vendor or may be subjected to some other lot disposition action. While it is customary to think of acceptance 

sampling as receiving inspection activity, there are also other uses. For example, frequently a manufacturer 

samples and inspects its own product at various stages of production. Lots that are accepted are sent forward for 

further processing, while rejected lots may be reworked or scrapped. 

The purpose of acceptance sampling is to sentence lots, but not to determine lot quality for example by an 

estimation procedure. Thus, most acceptance sampling plans are not designed and, hence, are not appropriate for 

estimation purposes. This is a surprising and somewhat alarming fact, because deciding on a lot without 

knowing its quality seems to be rather hazardous. Therefore, we will develop a procedure for determining the 

value of the relevant quality characteristic in order to make the required decision. ‘ 

A sampling inspected plans in the case that the sample observations are lifetimes of products put on test aims at 

verifying that the actual population average exceeds a required minimum. The population average stands for the 

average lifetime of the product, say,  . If 0
  is a specified minimum value then one would like to verify 

that
0

  , this means that the true unknown population average lifetime of the product exceeds the specified 



 
 

429 | P a g e  
 

value. On the basis of a random sample of size n, the lot is accepted if 
0

  . Otherwise the lot is rejected. If 

the observed number of failure is large, say larger than a number c, the derived lower bound is smaller than 
0

  

and the hypothesis 
0

   is not verified. Hence, the lot cannot be accepted. Such a sampling plan is named 

reliability test plan or acceptance sampling plans based on life tests.  

Such a procedure obviously requires the specification of the probability model governing the life of the 

products.  Exponential distribution-the CFR model is the central distribution in reliability studies.  Epstein [2] 

(1954) developed reliability test plans for exponential distribution. Sobel and Tischendrof [3] (1959) proposed 

acceptance sampling with new life test objectives. Sobel Gupta and Groll [4] (1961) constructed sampling plans 

similar to those of Epstein [2] (1954) based on Gamma distribution.  Sampling plans similar to those of Gupta 

and Groll [4] (1961) are developed by Kantam and Rosaiah [5] (1998) for half-logistic distribution and Kantam 

et al. [6] (2001) for log-logistic distribution, Rosaiah and Kantam [7] (2005) for the inverse Rayleigh 

distribution, Srinivasa Rao et al. [8] (2009) for Marshall-Olkin extended Lomax distribution, Rosaiah et al. [9] 

(2009) for Pareto distribution, Subba Rao et al. [10] (2013) developed acceptance sampling on Life Tests: 

Exponentiated Pareto Model and Subba Rao et al. [11] (2014) for Size Biased Lomax Model. Some related 

works on Pareto and Pareto-Rayleigh model are studied by Subba Rao et al. [12] (2013) percentiles of Range – 

Pareto Type model, Subba Rao et. al. [13] (2015) modified maximum likelihood estimation and Prasad and 

Kantam [14] (2015) studied a test procedure to discriminate between probability models.  

In the present paper it is assumed that the probability distribution of a life time random variable is Pareto-

Rayleigh distribution with known shape parameters. The problem considered is that of finding the minimum 

sample size necessary to assure a certain average life when the life test is terminated at a pre-assigned time t and 

when the observed number of failures does not exceed a given acceptance number. The decision procedure is to 

accept a lot only if the specified average life can be established with a pre-assigned high probability p*, which 

provides the protection to the consumer. The decision to accept the lot can take place only at the end of time t 

and only if the number of failures does not exceed the given acceptance number c. The life test experiment gets 

terminated at the time at which (c+1)
th

 failure is observed or at the end of time t whichever is earlier. In the first 

case the decision is to reject the lot. 

In section 2, we have obtained the minimum sample sizes necessary for various acceptance numbers - c, for 

various confidence levels - p* and various ratios of the test time-t to the specified average life σ0 using 

cumulative Binomial probabilities and cumulative Poisson probabilities for Pareto-Rayleigh distribution with 

known shape parameters (α = 2, 3, 4, σ = 1). Section 3 deals with the operating characteristic and producer’s risk 

of the sampling plans. The results are observed for α = 2, 3, 4, σ = 1 and presented for   = 2,   = 1 due to the 

space constraints. The use of the numerical tables is described through an illustration in Section 4 and the results 

are explained by an example in Section 5.  
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II RELIABILITY TEST PLAN 

A common practice in life testing is to terminate a life test by a predetermined time t and observe the number of 

failures (assuming that a failure is well-defined). One of the objectives of these experiments is to set a lower 

confidence limit on the average life. It is then desired to establish a specified average life with a given 

probability of at least p*. The decision to accept the specified average life occurs if and only if the number of 

observed failures at the end of the fixed time t does not exceed a given number c – called the acceptance 

number. The test may get terminated before the time t is reached when the number of failures exceeds c – the 

decision then being to reject the specified average life. For such a truncated life test and the associated decision 

rule, we are interested in obtaining the smallest sample size necessary to achieve the objective.  

A sampling plan consists of  

 the number of units n on test, 

 an acceptance number c such that if c or fewer failures occur during the test time t, the lot is accepted 

and 

 a ratio t/σ0 where σ0 is the specified average life. 

We fix the consumer’s risk the probability of accepting a bad lot (the one for which the true average life is 

below the specified life p0) not to exceed 1-p*, so that p* is a minimum confidence level with which a lot of true 

average life below σ0 is rejected by the sampling plan. For a fixed p* our sampling plan is characterized by 

(n,c,t/ σ0). Here we considered a lot of infinitely large size. Mathematically, given a number p* (0<p*<1), a 

value σ0 of σ and an acceptance number c, we want to find the smallest positive integer n such that 

   
-

0

1- 1- *
i

c
n ii

c

i

n p p p


                                                                                                                              (6) 

where p = F(t;σ0) given by Equation (4). Since Equation (4) depends only on the ratio t/σ, the experiment needs 

to specify only this ratio. If the number of observed failures before t is less than or equal to c, from (6) we obtain 

0 0( ; ) ( ; )F t F t       

That is, the true average life is more than the specified average and the lot is accepted as a good lot. The 

minimum values of n satisfying the inequality (6) have been obtain for p* = 0.75, 0.90, 0.95, 0.99 and t/ σ0 = 

0.628, 0.942, 1.257, 1.571, 2.356, 3.141, 3.927, 4.712. The results are presented in Table 1 for α = 2 and σ = 1. 

If p = F(t; σ) is small and n is large (as is true in some cases of our present work), the binomial probability is 

approximated by Poisson probability with parameter λ = np so that the equation (6) can be written as 
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where λ = n F(t;σ). The minimum values of n satisfying the inequality (7) have also been obtained for the same 

combination of p*, t/ σ0 as those used in inequality (6) and are given in Table 2 for α = 2 and σ = 1. 

2.1 Operating Characteristic function of Sampling Plan 

The operating characteristic of the sampling plan (n, c, t/σ0) gives the probability of accepting the lot. It can be 

seen that operating characteristic is an increasing function of σ. For given p*, t/ σ0, the choice of c and n will be 

made on the basis of operating characteristics. Values of operating characteristics as a function of σ/ σ0 for a few 

sampling plans for selective value of c = 2 from Table 1 are calculated and are given in Table 3. 

For a given value of the producer’s risk say 0.05, one may be interested in knowing what value of σ/ σ0 will 

ensure producer’s risk less than or equal to 0.05, if a sampling plan under discussion is adopted. It should be 

noted that the probability p may be obtained as a function of σ/ σ0, as p = F(t/σ) = F[(t/ σ0)/ (σ0/ σ)]. The value 

σ/σ0 is the smallest positive number for which the following inequality holds; 
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For a given sampling plan (n, c, t/σ0) at specified confidence level p* (i.e., consumer’s risk (1-p*), we have 

computed the minimum values of σ/σ0 satisfying the inequality (8) and are given in Table 4. 

III TABLES DESCRIPTION 

By assuming the lifetime models as Pareto-Rayleigh model  with α = 2, σ = 1 and that the experimenter is 

interested in establishing that the true unknown average life is at least 1000 hours with confidence p* = 0.75. It 

is desired to stop the experiment at t = 628 hours. Then, for an acceptance number c = 2, the required n in Table 

1 is 12. If, during 628 hours, no more than 2 failures out of 12 are observed, then the experimenter can assert, 

with a confidence level of 0.75 that the average life is at least 1000 hours. If the Poisson approximation to 

Binomial probability is used, the value of n = 13 is obtained from Table 2 for the same situation. 

In general, all the values of n tabulated by us are found to be less than the corresponding values of n tabulated in 

Kantam et. al. [5]  (2001) for log-logistic model. 

For the sampling plan (n =12, c = 2, t/σ0 = 0.628) and confidence level p* = 0.75 under Pareto-Rayleigh 

distribution with α = 2 and σ = 1 the values of the operating characteristic function from Table 3 are as follows: 

σ/σ0 2 4 6 8 10 12 

L(p) 0.9093 0.9974 0.9997 1.000 1.000 1.000 

The above values show that if the true mean life time is twice the required mean life time (σ/σ0 = 2) the 

producer’s risk is approximately 0.0907. The producer’s risk is 0.003 when the true mean life is 6 times or more 

the specified mean life (σ/σ0 ≥ 6). 
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From Table 4, we can get the values of the ratio σ/σ0 for various choices of c, t/σ0 in order that the producer’s 

may not exceed 0.05. For example if p* = 0.75, t/ σ0 = 0.628, c = 2, table 4 gives a reading of 2.28. This means 

the product can have an average life of 2.28 times the required average life time in order that under the above 

acceptance sampling plan the product is accepted with probability of at least 0.95. The actual average life time 

necessary to accept 95 percent of the lot is provided in Table 4. 

3.1 Discussion of results through an example 
 

Consider the following ordered failure times of the release of a software given in terms of hours from starting of 

the execution of the software up to the time at which a failure of the software is occurred Wood [15]. This data 

can be regarded as an ordered sample of size n = 10 with observations: 519, 968, 1430, 1893, 2490, 3058, 3625, 

4422, 5218 and 5823. 

Let the required average life time be 1000 hours and the testing time be t = 628 hours, this leads to rate of t/σ0 = 

0.628 with a corresponding sample size n = 10 and an acceptance number c = 1, which are obtained from Table 

1 for p* = 0.90. Therefore, the sampling plan for the above sample data is (n = 10, c = 1, t/σ0 = 0.628). For this 

sampling plan, based on the above 10 sample observations, we have to decide whether to accept the product or 

reject it. We accept the product only if the number of failures before 628 hours is less than or equal to 1. 

However, the confidence level is assured by the sampling plan only if the given life times follow Pareto-

Rayleigh distribution. In order to confirm that the given sample is generated by lifetimes following at least 

approximately the Pareto-Rayleigh distribution, we have compared the sample quantiles and the corresponding 

population quantiles and found a satisfactory agreement. Thus, the adoption of the decision rule of the sampling 

plan seems to be justified. In the sample of 10 units, we noticed only one failure at 519 hours before t = 628 

hours. Therefore we accept the product.  

Table 1 

Minimum sample size for the specified ratio 
0

/t  , confidence level p*, acceptance  

number c, α = 2,   = 1 using the Binomial approximation. 

 
P* c t/σ0=0.628 0.942 1.257 1.571 2.356 3.141 3.927 4.712 

0.75 0 4 2 2 1 1 1 1 1 

  1 9 5 3 3 3 2 2 2 

  2 12 7 5 4 4 3 3 3 

  3 16 9 7 6 6 4 4 4 

  4 20 11 8 7 7 5 5 5 

  5 24 13 10 8 8 6 6 6 

  6 27 16 11 10 10 7 7 7 

  7 31 18 13 11 11 8 8 8 

  8 35 20 15 12 12 9 9 9 

  9 38 22 16 14 14 11 10 10 

  10 42 24 18 15 15 12 11 11 

0.9 0 7 4 2 2 1 1 1 1 

  1 12 6 4 4 3 2 2 2 

  2 16 9 6 5 4 3 3 3 

  3 21 11 8 6 5 5 4 4 



 
 

433 | P a g e  
 

  4 25 14 10 8 6 6 5 5 

  5 29 16 11 9 7 7 6 6 

  6 33 18 13 11 9 8 7 7 

  7 37 20 15 12 10 9 9 8 

  8 41 23 16 13 11 10 10 9 

  9 45 25 18 15 12 11 11 10 

  10 49 27 20 16 13 12 12 11 

0.95 0 9 5 3 2 2 1 1 1 

  1 14 8 5 4 3 3 2 2 

  2 19 10 7 6 4 4 3 3 

  3 24 13 9 7 5 5 5 4 

  4 28 15 11 9 7 6 6 5 

  5 32 18 12 10 8 7 7 6 

  6 37 20 14 12 9 8 8 7 

  7 41 22 16 13 10 9 9 9 

  8 45 25 18 14 11 10 10 10 

  9 49 27 19 16 12 11 11 11 

  10 53 29 21 17 14 12 12 12 

0.99 0 13 7 4 3 2 2 2 1 

  1 19 10 7 5 4 3 3 3 

  2 25 13 9 7 5 4 4 4 

  3 30 16 11 9 6 5 5 5 

  4 35 18 13 10 7 7 6 6 

  5 40 21 15 12 9 8 7 7 

  6 44 24 16 13 10 9 8 8 

  7 49 26 18 15 11 10 9 9 

  8 53 29 20 16 12 11 10 10 

  9 57 31 22 18 14 12 11 11 

  10 62 33 24 19 15 13 13 12 
 

Table 2 

Minimum sample size for the specified ratio t/σ0, confidence level p*, acceptance 

number c, α = 2,   = 1 using the Poisson approximation. 

 

P* c t/σ0=0.628 0.942 1.257 1.571 2.356 3.141 3.927 4.712 

0.75 0 5 3 3 2 2 2 2 2 

  1 9 6 4 4 3 3 3 3 

  2 13 8 6 5 5 5 4 4 

  3 17 10 8 7 6 6 6 6 

  4 21 13 10 8 7 7 7 7 

  5 25 15 11 10 8 8 8 8 

  6 29 17 13 11 10 9 9 9 

  7 33 19 15 13 11 10 10 10 

  8 36 21 16 14 12 12 11 11 

  9 40 23 18 15 13 13 13 12 

  10 44 26 19 17 15 14 14 14 

0.9 0 8 5 4 3 3 3 3 3 

  1 13 8 6 5 5 5 4 4 

  2 18 11 8 7 6 6 6 6 

  3 23 13 10 9 8 7 7 7 

  4 27 16 12 10 9 9 9 9 

  5 31 18 14 12 10 10 10 10 

  6 35 21 16 14 12 11 11 11 
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  7 39 23 18 15 13 13 12 12 

  8 43 25 19 17 14 14 14 14 

  9 47 28 21 18 16 15 15 15 

  10 51 30 23 20 17 16 16 16 

0.95 0 10 6 5 4 4 4 4 4 

  1 16 10 7 6 6 5 5 5 

  2 21 13 10 8 7 7 7 7 

  3 26 15 12 10 9 8 8 8 

  4 31 18 14 12 10 10 10 10 

  5 35 21 16 14 12 11 11 11 

  6 40 23 18 15 13 13 13 12 

  7 44 26 20 17 15 14 14 14 

  8 48 28 21 19 16 15 15 15 

  9 52 31 23 20 17 17 16 16 

  10 57 33 25 22 19 18 18 18 

0.99 0 16 9 7 6 5 5 5 5 

  1 22 13 10 9 8 7 7 7 

  2 28 17 13 11 10 9 9 9 

  3 34 20 15 13 11 11 11 11 

  4 39 23 17 15 13 12 12 12 

  5 44 26 20 17 15 14 14 14 

  6 49 29 22 19 16 15 15 15 

  7 53 31 24 21 18 17 17 17 

  8 58 34 26 22 19 18 18 18 

  9 63 37 28 24 21 20 20 19 

  10 67 39 30 26 22 21 21 21 
  

Table 3 

Values of the operating characteristic function of the sampling plan (n, c, 
0

/t  ) for given 

confidence level p* with α = 2,   = 1. 

P* n C t/σ0 σ/σ0   = 2 4 6 8 10 12 

0.75 12 2 0.628 0.9093 0.9974 0.9997 1.0000 1.0000 1.0000 

  7 2 0.942 0.8692 0.9955 0.9995 0.9999 1.0000 1.0000 

  5 2 1.257 0.8334 0.9933 0.9993 0.9999 1.0000 1.0000 

  4 2 1.571 0.8019 0.9906 0.9989 0.9998 0.9999 1.0000 

  4 2 2.356 0.4344 0.9348 0.9906 0.9980 0.9994 0.9998 

  3 2 3.141 0.4890 0.9281 0.9884 0.9974 0.9992 0.9997 

  3 2 3.927 0.3108 0.8384 0.9667 0.9916 0.9974 0.9990 

  3 2 4.712 0.1961 0.7235 0.9281 0.9795 0.9932 0.9974 

0.9 16 2 0.628 0.8236 0.9937 0.9994 0.9999 1.0000 1.0000 

  9 2 0.942 0.7650 0.9901 0.9989 0.9998 0.9999 1.0000 

  6 2 1.257 0.7394 0.9875 0.9986 0.9997 0.9999 1.0000 

  5 2 1.571 0.6546 0.9788 0.9975 0.9995 0.9999 1.0000 

  4 2 2.356 0.4344 0.9348 0.9906 0.9980 0.9994 0.9998 

  3 2 3.141 0.4890 0.9281 0.9884 0.9974 0.9992 0.9997 

  3 2 3.927 0.3108 0.8384 0.9667 0.9916 0.9974 0.9990 

  3 2 4.712 0.1961 0.7235 0.9281 0.9795 0.9932 0.9974 

0.95 19 2 0.628 0.7493 0.9897 0.9989 0.9998 0.9999 1.0000 

  10 2 0.942 0.7086 0.9864 0.9985 0.9997 0.9999 1.0000 

  7 2 1.257 0.6410 0.9795 0.9976 0.9995 0.9999 1.0000 

  6 2 1.571 0.5113 0.9620 0.9952 0.9990 0.9997 0.9999 

  4 2 2.356 0.4344 0.9348 0.9906 0.9980 0.9994 0.9998 

  4 2 3.141 0.1816 0.8022 0.9614 0.9906 0.9971 0.9989 

  3 2 3.927 0.3108 0.8384 0.9667 0.9916 0.9974 0.9990 
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  3 2 4.712 0.1961 0.7235 0.9281 0.9795 0.9932 0.9974 

0.99 25 2 0.628 0.5940 0.9781 0.9975 0.9995 0.9999 1.0000 

  13 2 0.942 0.5400 0.9711 0.9966 0.9993 0.9998 0.9999 

  9 2 1.257 0.4558 0.9573 0.9947 0.9989 0.9997 0.9999 

  7 2 1.571 0.3857 0.9402 0.9921 0.9984 0.9995 0.9998 

  5 2 2.356 0.2329 0.8698 0.9788 0.9952 0.9986 0.9995 

  4 2 3.141 0.1816 0.8022 0.9614 0.9906 0.9971 0.9989 

  4 2 3.927 0.0695 0.6177 0.8990 0.9714 0.9906 0.9964 

  4 2 4.712 0.0268 0.4344 0.8021 0.9348 0.9765 0.9906 
  

Table 4 

Minimum ratio of true σ and required σ0 for the acceptability of a lot with  

producer’s risk of 0.05 for α = 2,   = 1 

 

P* C t/σ0 =0.628 0.942 1.257 1.571 2.356 3.141 3.927 4.712 

0.75 0 5.54 5.87 7.83 6.90 10.34 13.78 29.11 20.68 

0.75 1 3.06 3.31 3.24 4.05 4.54 6.05 10.41 9.08 

0.75 2 2.28 2.50 2.68 2.84 3.28 4.38 6.60 6.56 

0.75 3 2.02 2.15 2.41 2.69 3.45 3.62 7.11 5.43 

0.75 4 1.87 1.95 2.07 2.31 2.99 3.18 5.76 4.77 

0.75 5 1.78 1.82 2.00 2.06 2.69 2.88 4.90 4.32 

0.75 6 1.67 1.80 1.82 2.09 2.47 2.67 4.29 4.00 

0.75 7 1.62 1.72 1.80 1.94 2.30 2.50 3.85 3.76 

0.75 8 1.58 1.66 1.78 1.81 2.17 2.37 3.50 3.56 

0.75 9 1.53 1.61 1.68 1.85 2.06 2.75 3.22 3.40 

0.75 10 1.51 1.57 1.68 1.76 1.97 2.63 3.65 3.26 

0.90 0 7.33 8.31 7.83 9.78 10.34 13.78 17.23 20.68 

0.90 1 3.56 3.67 3.88 4.84 6.07 6.05 7.57 9.08 

0.90 2 2.67 2.90 3.02 3.35 4.26 4.38 5.47 6.56 

0.90 3 2.35 2.43 2.65 2.69 3.45 4.60 4.53 5.43 

0.90 4 2.13 2.27 2.43 2.58 2.99 3.99 3.97 4.77 

0.90 5 1.98 2.08 2.15 2.29 2.69 3.58 3.60 4.32 

0.90 6 1.87 1.95 2.08 2.27 2.83 3.29 3.34 4.00 

0.90 7 1.80 1.85 2.02 2.10 2.62 3.07 3.83 3.76 

0.90 8 1.74 1.83 1.88 1.96 2.47 2.89 3.61 3.56 

0.90 9 1.69 1.76 1.85 1.98 2.34 2.75 3.43 3.40 

0.90 10 1.65 1.71 1.83 1.88 2.23 2.63 3.28 3.26 

0.95 0 8.32 9.29 9.60 9.78 14.67 13.78 17.23 20.68 

0.95 1 3.86 4.30 4.42 4.84 6.07 8.09 7.57 9.08 

0.95 2 2.93 3.09 3.33 3.78 4.26 5.67 5.47 6.56 

0.95 3 2.53 2.69 2.86 3.02 3.45 4.60 5.75 5.43 

0.95 4 2.26 2.37 2.60 2.82 3.46 3.99 4.98 4.77 

0.95 5 2.09 2.24 2.29 2.50 3.09 3.58 4.48 4.32 

0.95 6 2.00 2.09 2.19 2.44 2.83 3.29 4.11 4.00 

0.95 7 1.90 1.97 2.12 2.25 2.62 3.07 3.83 4.60 

0.95 8 1.83 1.93 2.06 2.10 2.47 2.89 3.61 4.33 

0.95 9 1.77 1.85 1.93 2.10 2.34 2.75 3.43 4.12 

0.95 10 1.73 1.79 1.90 1.99 2.45 2.63 3.28 3.94 

0.99 0 10.00 11.00 11.09 11.99 14.67 19.56 24.45 20.68 

0.99 1 4.52 4.85 5.34 5.52 7.26 8.09 10.12 12.14 

0.99 2 3.39 3.58 3.87 4.16 5.01 5.67 7.09 8.51 

0.99 3 2.85 3.03 3.25 3.58 4.03 4.60 5.75 6.90 

0.99 4 2.55 2.64 2.89 3.04 3.46 4.62 4.98 5.98 

0.99 5 2.36 2.46 2.66 2.86 3.44 4.12 4.48 5.37 

0.99 6 2.20 2.33 2.40 2.59 3.13 3.77 4.11 4.93 
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0.99 7 2.10 2.19 2.30 2.52 2.90 3.50 3.83 4.60 

0.99 8 2.01 2.12 2.22 2.35 2.72 3.29 3.61 4.33 

0.99 9 1.93 2.02 2.15 2.31 2.78 3.11 3.43 4.12 

0.99 10 1.89 1.95 2.10 2.19 2.64 2.97 3.71 3.94 
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