International Journal of Advance Research in Science and Engineering

Vol. No. 5, Issue No. 08, August 2016 www.ijarse.com

QUASI γ-NORMAL SPACES IN TOPOLOGICAL SPACES

Hamant Kumar¹ and M. C. Sharma²

^{1,2} Department of Mathematics, N. R. E. C. College, Khurja-203131, U. P. (India)

ABSTRACT

In this paper, we introduce the concept of $\pi g \gamma$ -closed sets as weak form of πg -closed sets. We also introduce the notion of quasi γ -normal spaces and by using $\pi g \gamma$ -closed sets, we obtain a characterization and preservation theorems for quasi γ -normal spaces. Further we show that this property is a topological property and it is a hereditary property only with respect to closed domain subspaces. The relationships among normal, π -normal, quasi-normal, mildly-normal, p-normal, πp -normal, quasi p-normal, mildly p-normal, γ -normal, $\pi \gamma$ -normal, quasi γ -normal, mildly γ -normal are investigated.

2010 AMS Subject classification: 54D15, 54D10, 54A05, 54C08.

Keywords: π -open, γ -open, and $\pi g \gamma$ -closed sets; $\pi g \gamma$ -closed, almost $\pi g \gamma$ -closed, $\pi g \gamma$ -continuous and almost $\pi g \gamma$ -continuous functions; quasi γ -normal spaces.

I INTRODUCTION

The notion of quasi normal space was introduced by Zaitsev [14]. Levine [6] initiated the investigation of g-closed sets in topological spaces. Singal and Singal [11] introduced the notion of mildly normal spaces which are weaker than quasi-normal spaces. Nour [9] introduced the notion of p-normal spaces and obtained their properties. Lal and Rahman [5] have further studied notions of quasi normal and mildly normal spaces. Dontchev and Noiri [1] introduced the notion of π g-closed sets as a weak form of g-closed sets due to Levine [6]. By using π g-closed sets, Dontchev and Noiri [1] obtained a new characterization of quasi normal spaces. Kalantan [4] introduced a weaker version of normality called π -normality and proved that π -normality is a property which lies between normality and almost normality. Ekici [2] introduced a new class of normal spaces are investigated. Thabit and Kamarulhaili [13] introduced a weaker version of p-normality called π p-normality, which lies between p-normality and almost p-normality. Recenty, Thabit and Kamarulhaili [12] introduced a weaker form of p-normality, which lies between π p-normality and mild p-normality.

www.ijarse.com

II PRELIMINARIES

Throughout this paper, spaces (X, τ) , (Y, σ) , and (Z, γ) (or simply X, Y and Z) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a space X. The closure of A and interior of A are denoted by cl(A) and int(A) respectively. A subset A is said to be **regular open** (resp. **regular closed**) if A = int(cl(A)) (resp. A = cl(int(A))). The finite union of regular open sets is said to be **\pi-open**. The complement of a π -open set is said to be **\pi-closed**. A subset A is said to γ -open [3] if $A \subset cl(int(A)) \cup int(cl(A))$. The complement of a γ -open set is said to be γ -closed [3]. The intersection of all γ -closed sets containing A is called γ -closure [3] of A, and is denoted by $\gamma cl(A)$. The γ -interior [3] of A, denoted by $\gamma int(A)$, is defined as union of all γ -open sets contained in A.

2.1 Definition. A subset A of a space X is said to be

(1) generalized closed (briefly g-closed) [6] if $cl(A) \subset U$ whenever $A \subset U$ and $U \in \tau$.

- (2) π g-closed [1] if cl(A) \subset U whenever A \subset U and U is π -open in X.
- (3) generalized γ -closed [2] if $\gamma cl(A) \subset U$ whenever $A \subset U$ and $U \in \tau$.
- (4) π gy-closed if γ cl(A) \subset U whenever A \subset U and U is π -open in X.
- (5) g-open (resp. π g-open, gy-open, π gy-open) if the complement of A is g-closed (resp. π g-closed, gy-closed).

III QUASI γ-NORMAL SPACES

3.1 Definition. A space X is said to be γ -normal [2] (resp. p-normal [9, 10]) if for every pair of disjoint closed subsets A, B of X, there exist disjoint γ -open (resp. p-open) sets U, V of X such that $A \subset U$ and $B \subset V$.

3.2 Definition. A space X is said to be $\pi\gamma$ -normal (resp. π -normal [4], π p-normal [13]) if for every pair of disjoint closed subsets A, B of X, one of which is π -closed, there exist disjoint γ -open (resp. open, p-open) sets U, V of X such that $A \subset U$ and $B \subset V$.

3.3 Definition. A space X is said to be **quasi** γ -normal (resp. **quasi-normal** [14], **quasi p-normal** [12]) if for every pair of disjoint π -closed subsets H, K of X, there exist disjoint γ -open (resp. open, p-open) sets U, V of X such that $H \subset U$ and $K \subset V$.

3.4 Definition. A space X is said to be mildly γ -normal (resp. mildly-normal [11], mildly p-normal [7]) if for every pair of disjoint regular closed subsets H, K of X, there exist disjoint γ -open (resp. open, p-open) sets U, V of X such that $H \subset U$ and $K \subset V$.

ISSN 2319 - 8354

By the definitions stated above, we have the following diagram:

normality	\Rightarrow	π -normalily	\Rightarrow	quasi-normality	\Rightarrow	mild-normality
\Downarrow		\Downarrow		\Downarrow		\downarrow
p-normality	\Rightarrow	π p-normalily	\Rightarrow	quasi p-normality	\Rightarrow	mild p-normality
\Downarrow		\Downarrow		\Downarrow		\Downarrow
γ-normality	\Rightarrow	πγ-normalily	\Rightarrow	quasi γ-normality	\Rightarrow	mild γ-normality

Where none of the implications is reversible as can be seen from the following examples:

3.5 Example. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, X\}$. Then the space X is π p-normal as well as $\pi\gamma$ -normal but not p-normal.

3.6 Example. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Then the space X is p-normal as well as π p-normal.

3.7 Example. Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, X\}$. Then the space X is γ -normal as well as $\pi\gamma$ -normal but not p-normal.

3.8 Example. Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{b, d\}, \{a, b, d\}, \{b, c, d\}, X\}$. Then the space X is γ -normal but not normal.

3.9 Example. Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a\}, \{c\}, \{a, c\}, \{a, b, d\}, \{b, c, d\}, X\}$. The pair of disjoint closed subsets of X are $A = \{a\}$ and $B = \{c\}$. Also $U = \{a, b\}$ and $V = \{c, d\}$ are p-open sets such that $A \subset U$ and $B \subset V$. Hence the space X is p-normal as well as γ -normal but not normal.

3.10. Example. Let $X = \{a, b, c, d, e\}$ and $\tau = \{\phi, \{e\}, \{a, b\}, \{c, d\}, \{a, b, e\}, \{c, d, e\}, \{a, b, c, d\}, X\}$. The pair of disjoint π -closed subsets of X are $A = \{a, b\}$ and $B = \{c, d\}$. Also $U = \{a, b, e\}$ and $V = \{c, d\}$ are γ -open sets such that $A \subset U$ and $B \subset V$. Hence the space X is quasi γ -normal but not quasi normal, since U and V are not open sets.

3.11. Example. Let $X = \{a, b, c, d, e\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c, d, e\}, \{b, c, d, e\}, X\}$. The pair of disjoint π -closed subsets of X are $A = \{a\}$ and $B = \{b\}$. Also $U = \{a, c\}$ and $V = \{b, d\}$ are p-open sets such that $A \subset U$ and $B \subset V$. Hence the space X is quasi p-normal as well as quasi γ -normal but not quasi normal, since U and V are not open sets.

3.12 Theorem. For a space X, the following are equivalent:

(a) X is quasi γ -normal.

(b) For every pair of π -open subsets U and V of X whose union is X, there exist γ -closed subsets G and H of X such that $G \subset U$, $H \subset V$ and $G \cup H = X$.

- (c) For any π -closed set A and every π -open set B in X such that $A \subset B$, there exists a γ -open subset U of X such that $A \subset U \subset \gamma cl(U) \subset B$.
- (d) For every pair of disjoint π -closed subsets A and B of X, there exist γ -open subsets U and V of X such that $A \subset U$, $B \subset V$ and $\gamma cl(U) \cap \gamma cl(V) = \emptyset$.

Proof. (a) \Rightarrow (b), (b) \Rightarrow (c), (c) \Rightarrow (d) and (d) \Rightarrow (a).

(a) \Rightarrow (b). Let U and V be any π -open subsets of a quasi γ -normal space X such that $U \cup V = X$. Then, X – U and X – V are disjoint π -closed subsets of X. By quasi γ -normality of X, there exist disjoint γ -open subsets U₁ and V₁ of X such that X - U \subset U₁ and X - V \subset V₁. Let G = X - U₁ and H = X - V₁. Then, G and H are γ -closed subsets of X such that G \subset U, H \subset V and G \cup H = X.

(b) \Rightarrow (c). Let A be a π -closed and B is a π -open subsets of X such that $A \subset B$. Then, X - A and B are π -open subsets of X such that $(X - A) \cup B = X$. Then, by part (b), there exist γ -closed sets G and H of X such that $G \subset (X - A)$, $H \subset B$ and $G \cup H = X$. Then, $A \subset (X - G)$, $(X - B) \subset (X - H)$ and $(X - G) \cap (X - H) = \emptyset$. Let U = X - G and V = (X - H). Then U and V are disjoint γ -open sets such that $A \subset U \subset X - V \subset B$. Since X - V is γ -closed, then we have $\gamma cl(U) \subset (X - V)$. Thus, $A \subset U \subset \gamma cl(U) \subset B$.

(c) \Rightarrow (d). Let A and B be any disjoint π -closed subset of X. Then $A \subset X - B$, where X - B is π -open. By the part (c), there exists a γ -open subset U of X such that $A \subset U \subset \gamma cl(U) \subset X - B$. Let $V = X - \gamma cl(U)$. Then, V is a γ -open subset of X. Thus, we obtain $A \subset U$, $B \subset V$ and $\gamma cl(U) \cap \gamma cl(V) = \emptyset$.

(d) \Rightarrow (a). It is obvious.

3.13 Proposition. Let $f: X \rightarrow Y$ be a function, then:

(a) The image of γ -open subset under an open continuous function is γ -open.

(b) The inverse image of γ -open (resp. γ -closed) subset under an open continuous function is γ -open (resp. γ -closed) subset.

(c) The image of γ -closed subset under an open and a closed continuous surjective function is γ -open.

3.14 Theorem. The image of a quasi γ -normal space under an open continuous injective function is a quasi γ -normal.

Proof. Let X be a quasi γ -normal space and let $f: X \to Y$ be an open continuous injective function. We need to show that f(X) is a quasi γ -normal. Let A and B be any two disjoint π -closed sets in f(X). Since the inverse image of a π -closed set under an open continuous function is a π -closed. Then, $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint π -closed sets in X. By quasi γ -normality of X, there exist γ -open subsets U and V of X such that $f^{-1}(A) \subset U$, $f^{-1}(B) \subset V$ and $U \cap V = \emptyset$. Since f is an open continuous injective

function, we have $A \subset f(U)$, $B \subset f(V)$ and $f(U) \cap f(V) = \emptyset$. By **Proposition 3.13**, we obtain f(U) and f(V) are disjoint γ -open sets in f(X) such that $A \subset f(U)$ and $B \subset f(V)$. Hence f(X) is quasi γ -normal. From the above theorem, we have the following corollary.

3.15 Corollary. Quasi γ -normality is a topological property.

The following lemma helps us to show that quasi γ -normality is a hereditary with respect to closed domain subspaces.

3.16 Lemma. Let M be a closed domain subspace of a space X. If A is a γ -open set in X, then A \cap M is γ -open set in M.

3.17 Theorem. Quasi γ -normality is a hereditary with respect to closed domain subspaces.

Proof. Let M be a closed domain subspace of a quasi γ -normal space X. Let A and B be any disjoint π -closed sets in M. Since M is a closed domain subspace of X, then we have A and B be any disjoint π -closed sets of X. By quasi γ -normality of X, there exist disjoint γ -open subsets U and V of X such that $A \subset U$ and $B \subset V$. By the **Lemma 3.16**, we obtain $U \cap M$ and $V \cap M$ are disjoint γ -open sets in M such that $A \subset U \cap M$ and $B \subset V \cap M$. Hence, M is quasi γ -normal subspace.

IV PRESERVATION THEOREMS

The following result is useful for giving some other characterizations of quasi γ -normal spaces.

4.1 Lemma. A subset A of a space X is $\pi g\gamma$ -open if and only if $F \subset \gamma int(A)$ whenever $F \subset A$ and F is π -closed.

4.2 Theorem. For a space X, the following are equivalent:

(a) X is quasi γ -normal.

- (b) For any disjoint π -closed sets H and K, there exist disjoint gy-open sets U and V such that $H \subset U$ and $K \subset V$
- (c) For any disjoint π -closed sets H and K, there exist disjoint π g γ -open sets U and V such that H \subset U and K \subset V.
- (d) For any π -closed set H and any π -open set V containing H, there exists a gy-open set U of X such that $H \subset U \subset \gamma cl(U) \subset V$.
- (e) For any π -closed set H and any π -open set V containing H, there exists a $\pi g\gamma$ -open set U of X such that $H \subset U \subset \gamma cl(U) \subset V$.

Proof. (a) \Rightarrow (b), (b) \Rightarrow (c), (c) \Rightarrow (d), (d) \Rightarrow (e) and (e) \Rightarrow (a).

(a) \Rightarrow (b). Let X be quasi γ -normal space. Let H, K be disjoint π -closed sets of X. By assumption, there exist disjoint γ -open sets U, V such that $H \subset U$ and $K \subset V$. Since every γ -open set is g γ -open, so U and V are g γ -open sets such that $H \subset U$ and $K \subset V$.

(b) \Rightarrow (c). Let H, K be two disjoint π -closed sets. By assumption, there exist disjoint gy-open sets U and V such that $H \subset U$ and $K \subset V$. Since gy-open set is π gy-open, so U and V are π gy-open sets such that $H \subset U$ and $K \subset V$.

(c) \Rightarrow (d). Let H be any π -closed set and V be any π -open set containing H. By assumption, there exist disjoint π g γ -open sets U and W such that H \subset U and X - V \subset W. By Lemma 4.1, we get X - V \subset γ int(W) and γ cl(U) $\cap \gamma$ int (W) = \emptyset . Hence H \subset U $\subset \gamma$ cl(U) \subset X- γ int(W) \subset V.

(d) \Rightarrow (e). Let H be any π -closed set and V be any π -open set containing H. By assumption, there exist gy-open set U of X such that $H \subset U \subset \gamma cl(U) \subset V$. Since, every gy-open set is π gy-open, there exists π gy-open sets U of X such that $H \subset U \subset \gamma cl(U) \subset V$.

(e) \Rightarrow (a). Let H, K be any two disjoint π -closed sets of X. Then $H \subset X - K$ and X - K is π -open. By assumption, there exists $\pi g\gamma$ -open set G of X such that $H \subset G \subset \gamma cl(G) \subset X - K$. Put $U = \gamma int(G)$, $V = X - \gamma cl(G)$. Then U and V are disjoint γ -open sets of X such that $H \subset U$ and $K \subset V$.

4.3 Definition. A function $f: X \to Y$ is said to be

- (a) γ -closed [2] (resp. $\pi g\gamma$ -closed) if f(F) is γ -closed (resp. $\pi g\gamma$ -closed) in Y for every closed set F of X.
- (b) rc-preserving [8] (resp. almost closed [11], almost γ -closed, almost $\pi g \gamma$ -closed) if f(F) is regular closed (resp. closed, γ -closed, $\pi g \gamma$ -closed) in Y for every $F \in RC(X)$.
- (c) π -continuous [1] (resp. almost π -continuous [1]) if $f^{-1}(F)$ is π -closed in X for every closed (resp. regular closed) set F of Y.
- (d) almost continuous [11] if $f^{-1}(V)$ is open in X for every regular open set V of Y.
- (e) $\pi g\gamma$ -continuous (resp. almost $\pi g\gamma$ -continuous) if f⁻¹(F) is $\pi g\gamma$ -closed in X for every closed (resp. regular closed) set F of Y.

4.4 Theorem. If $f: X \to Y$ is an almost π -continuous and $\pi g\gamma$ -closed function, then f(A) is $\pi g\gamma$ -closed in Y for every $\pi g\gamma$ -closed set A of X.

Proof. Let A be any $\pi g\gamma$ -closed set of X and V be any π -open set of Y containing f(A). Since f is almost π -continuous, f⁻¹(V) is π -open in X and A \subset f⁻¹(V). Therefore, we have $\gamma cl(A) \subset$ f⁻¹(V) and hence $f(\gamma cl(A)) \subset V$. Since f is $\pi g\gamma$ -closed, $f(\gamma cl(A))$ is $\pi g\gamma$ -closed in Y and hence we obtain $\gamma cl(f(A)) \subset \gamma cl(f(\gamma cl(A))) \subset V$. Hence f(A) is $\pi g\gamma$ -closed in Y.

4.5 Theorem. A surjection $f: X \to Y$ is almost $\pi g\gamma$ -closed if and only if for each subset S of Y and each $U \in RO(X)$ containing $f^{-1}(S)$, there exists a $\pi g\gamma$ -open set V of Y such that $S \subset V$ and $f^{-1}(V) \subset U$.

Proof. Necessity. Suppose that f is almost $\pi g\gamma$ -closed. Let S be a subset of Y and $U \in RO(X)$ containing $f^{-1}(S)$. If V = Y - f(X - U), then V is a $\pi g\gamma$ -open set of Y such that $S \subset V$ and $f^{-1}(V) \subset U$.

Sufficiency. Let F be any regular closed set of X. Then $f^{-1}(Y - f(F)) \subset (X - F)$ and $(X-F) \in RO(X)$. There exists a $\pi g \gamma$ -open set V of Y such that $Y - f(F) \subset V$ and $f^{-1}(V) \subset (X - F)$. Therefore, we have $f(F) \supset (Y - V)$ and $F \subset X - f^{-1}(V) \subset f^{-1}(Y - V)$. Hence we obtain f(F) = Y - V and f(F) is $\pi g \gamma$ -closed in Y, which shows that f is almost $\pi g \gamma$ -closed.

4.6 Theorem. If $f: X \to Y$ is an almost $\pi g\gamma$ -continuous, rc-preserving injection and Y is quasi γ -normal then X is quasi γ -normal.

Proof. Let A and B be any disjoint π -closed sets of X. Since f is an rc-preserving injection, f(A) and f(B) are disjoint π -closed sets of Y. Since Y is quasi γ -normal, there exist disjoint γ -open sets U and V of Y such that $f(A) \subset U$ and $f(B) \subset V$.

Now if G = int(cl(U)) and H = int(cl(V)). Then G and H are regular open sets such that $f(A) \subset G$ and $f(B) \subset H$. Since f is almost $\pi g\gamma$ -continuous, $f^{-1}(G)$ and $f^{-1}(H)$ are disjoint $\pi g\gamma$ -open sets containing A and B which shows that X is quasi γ -normal.

4.7 Theorem. If $f: X \to Y$ is π -continuous, almost γ -closed surjection and X is quasi γ -normal space then Y is γ -normal.

Proof. Let A and B be any two disjoint closed sets of Y. Then $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint π -closed sets of X. Since X is quasi γ -normal, there exist disjoint γ -open sets U and V such that $f^{-1}(A) \subset U$ and $f^{-1}(B) \subset V$.

Let G = int(cl(U)) and H = int(cl(V)). Then G and H are disjoint regular open sets of X such that $f^{-1}(A) \subset G$ and $f^{-1}(B) \subset H$. Now, we set K = Y - f(X-G) and L = Y - f(X-H). Then K and L are γ -open sets of Y such that $A \subset K$, $B \subset L$, $f^{-1}(K) \subset G$ and $f^{-1}(L) \subset H$. Since G and H are disjoint, K and L are disjoint. Since K and L are γ -open and we obtain $A \subset \gamma int(K)$, $B \subset \gamma int(L)$ and $\gamma int(K) \cap \gamma int(L) = \emptyset$. Therefore, Y is γ -normal.

4.8 Theorem. Let $f: X \to Y$ be an almost π -continuous and almost $\pi g\gamma$ -closed surjection. If X is quasi γ -normal space then Y is quasi γ -normal.

Proof. Let A and B be any disjoint π -closed sets of Y. Since f is almost π -continuous, f⁻¹(A) and f⁻¹(B) are disjoint π -closed sets of X. Since X is quasi γ -normal, there exist disjoint γ -open sets U and V of X such that f⁻¹(A) \subset U and f⁻¹(B) \subset V.

Put G = int(cl(U)) and H = int(cl(V)). Then G and H are disjoint regular open sets of X such that $f^{-1}(A) \subset G$ and $f^{-1}(B) \subset H$. By **Theorem 4.5**, there exist gy-open sets K and L of Y such that $A \subset K$, $B \subset L$, $f^{-1}(K) \subset G$ and $f^{-1}(L) \subset H$. Since G and H are disjoint, so are K and L by Lemma 4.1, $A \subset \gamma$ int(K), $B \subset \gamma$ int(L) and γ int(K) $\cap \gamma$ Int(L) = \emptyset . Therefore, Y is quasi γ -normal.

4.9 Corollary. If $f: X \to Y$ is an almost continuous and almost closed surjection and X is a normal space, then Y is quasi γ -normal.

Proof. Since every almost closed function is almost $\pi g\gamma$ -closed by **Theorem 4.8**, Y is quasi γ -normal.

V CONCLUSION

We introduced a weaker version of γ -normality called quasi γ -normality. We proved that it is a topological property and a hereditary property with respect to closed domain subspaces. We gave some characterizations and preservation theorems of quasi γ -normal spaces. Some counterexamples were given and some basic properties were presented. The relationships among normal, π -normal, quasi-normal, mild-normality, p-normal, π p-normal, quasi p-normal, mild p-normal, γ -normal, $\pi\gamma$ -normal, quasi γ -normal are investigated.

REFERENCES

[1] J. Dontchev and T. Noiri, Quasi-normal spaces and π g-closed sets, *Acta Math. Hungar.* 89(3)(2000), 211-219.

[2] E. Ekici, On γ-normal spaces, Bull. Math. Soc. Math. Roumanie Tome 50(98), 3(2007), 259-272.

[3] A. A. El-Atik, A study of some types of mappings on topological spaces, M. Sc. Thesis, Tanta Univ., Egypt, 1997.

[4] L. Kalantan, π-normal topological spaces, *Filomat*, Vol. 22 No. 1 (2008), 173-181.

[5] S. Lal and M. S. Rahman, A note on quasi-normal spaces, Indian J. Math., 32(1990), 87-94.

[6] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2), 19(1970), 89-96.

[7] G. B. Navalagi, p-normal, almost p-normal and mildly p-normal spaces, *Topology Atlas Preprint #427*. <u>URL:http://at.yorku.ca/i/d/e/b/71.htm</u>.

[8] T. Noiri, Mildly normal spaces and some functions, Kyungpook Math. J., 36(1996), 183-190.

[9] T. M. J. Nour, Contribution to the Theory of Bitopological Spaces, Ph. D. Thesis, Delhi Univ 1989.

[10] Paul and Bhattacharyya, On p-normal spaces, Soochow J. Math., Vol. 21, 3(1995), 273-289.

[11] M. K. Singal and A. R. Singal, Mildly normal spaces, Kyungpook Math. J., 13(1973), 27-31.

[12] S. A. S. Thabit and H. Kamarulhaili, On quasi p-normal normal spaces, Int. J. Math. Anal., 6(27) (2012), 1301-1311.

[13] S. A. S. Thabit and H. Kamarulhaili, π p-normal topological spaces, *Int. J. Math. Anal.*, 6(21) (2012), 1023-1033.

[14] V. Zaitsev, On certain classes of topological spaces and their biocompactifications, *Dokl. Akad. Nauk SSSR*, *178*(1968), 778-779.