International Journal of Advance Research in Science and Engineering Vol. No.5, Issue No. 09, September 2016 IJA www.ijarse.com ISSN (0) ISSN (P)

NEW CLASS OF MEROMORPHIC MULTIVALENT FUNCTIONS BY USING DERIVATIVE OPERATOR

Amruta Patil¹, S. M. Khairnar² and B. R. Ahirrao³

¹Department of Mathematics, AISSMS, Institute of Information Technology, Shivajinagar, Pune ²Department of Applied Sciences, MIT Academy of Engineering, Alandi, Pune (M. S.), (India) ³Department of Mathematics, Z. B. Patil College, Dhule

ABSTRACT

In this article, we have introduced a new class $S^{\lambda m}(\vartheta, \alpha, \mu)$ of meromorphic multivalent functions defined by Ruscheweyh derivative operator. We also obtained some geometric properties. All the results are sharp.

Keywords: Meromorphic Function, Multivalent Function, Derivative Operator, Distortion, Extreme Points, Arithmetic Mean

2010 Mathematics Subject Classification: 30C45

I. INTRODUCTION

Let A_m denote the class of functions f(z) of the form:

 $f(z)=z^{-m}+\sum_{k=1}^{\infty}a_{k-m}z^{k-m}\;,\qquad a_{k-m}\geq 0,m\in N$

Which are analytic and meromorphic multivalent in the punctured unit disc $U^* = \{z \in C : 0 < |z| < 1\}$.

Consider the subclass T_m of the function of the form: $f(z) = z^{-m} + \sum_{k=1}^{\infty} a_{k-m} z^{k-m}$, $a_{k-m} \ge 0, m \in N$ (1)

The convolution of two functions, f(z) is given by (1) and $g(z) = z^{-m} + \sum_{k=1}^{\infty} b_{k-m} z^{k-m}$, $b_{k-m} \ge 0$ is defined by

$$(f * g)(z) = z^{-m} + \sum_{k=1}^{\infty} a_{k-m} b_{k-m} z^{k-m}, \quad a_{k-m} b_{k-m} \ge 0$$

We shall required Ruscheweyh derivative operator for the function belonging to the class T_m which is defined by the following convolution, $D^{\lambda,m} = \frac{z^{-m}}{(1-z)^{\lambda+m}} * f(z), \quad \lambda > -m, f \in T_m$ (2)

In terms of binomial coefficients (2) can be written as

Vol. No.5, Issue No. 09, September 2016

IJARSE ISSN (0) 2319 - 8354 ISSN (P) 2319 - 8346

www.ijarse.com

 $D^{\lambda,m} = z^{-m} + \sum_{k=1}^{\infty} \binom{\lambda+k}{k} a_{k-m} z^{k-m} \qquad \lambda > -m, f \in T_m$ (3)

Atshan, Mustafa and Mouajeeb (2013) was studied a class of meromorphic multivalent functions by linear derivative operator. The linear operator $D^{\lambda,1}$ was studied by Raina and Srivastava (2006). Also the operator $D^{\lambda,p}$, analogous to $D^{\lambda,m}$ was studied by Goyal Prajapat (2009).

A function $f \in T_m$ is meromorphic multivalent starlike function of order ρ , $0 \le \rho < m$ if

$$-Re\left\{\frac{zf'(z)}{f(z)}\right\} > \rho \qquad (0 \le \rho < m, z \in U^*)$$

$$\tag{4}$$

A function $f \in T_m$ is meromorphic multivalent convex function of order ρ , $0 \le \rho < m$ if

$$-Re\left\{1 + \frac{zf'(z)}{f(z)}\right\} > \rho \qquad (0 \le \rho < m, z \in U^*)$$
(5)

Definition (01): Let $f \in T_m$ is given by (1). The class $S^{\lambda m}(\vartheta, \alpha, \mu)$ is defined by

$$S^{\lambda,m}\left\{f\in T_m: \left|\frac{\vartheta\left(\left[D^{\lambda,m}f(z)\right]^{-}\frac{D^{\lambda,m}f(z)}{z}\right]}{\alpha\left(D^{\lambda,m}f(z)\right)^{-}+(1-\vartheta)\frac{D^{\lambda,m}f(z)}{z}}\right| < \mu, \ 0 \le \vartheta < 1 \ 0 \le \alpha < 1, 0 < \mu < 1, \lambda > -m, m \in N\right\}$$
(6)

II. COEFFICIENT INEQUALITY

Theorem (01): Let a function $f \in T_m$ then the function $f \in S^{\lambda,m}(\vartheta, \alpha, \mu)$, if and only if

$$\sum_{k=1}^{\infty} \binom{\lambda+k}{k} \left[\vartheta(k-m-1) - \mu(\alpha(k-m)+1-\vartheta) \right]_{k-m} \le \mu(1-m\alpha-\vartheta) - \vartheta(m+1)$$

$$(0 \le \vartheta < 1 \ 0 \le \alpha < 1, 0 < \mu < 1, \lambda > -m, m \in \mathbb{N})$$

$$(7)$$

The result is sharp for the function f(z) given by

$$f(z) = z^{-m} + \sum_{k=1}^{\infty} \frac{\mu^{(1-m\alpha-\theta)-\theta(m+1)}}{\binom{\lambda+k}{k} [\theta^{(k-m-1)}-\mu(\alpha^{(k-m)+1-\theta})]} z^{k-m}.$$

Proof: Assume that the inequality (7) is hold true and let |z| = 1 then from (6) we have

$$\begin{split} &\left|\vartheta\left(\left(D^{\lambda m}f(z)\right)'-\frac{D^{\lambda m}f(z)}{z}\right)\right|-\mu\left|\alpha\left(D^{\lambda m}f(z)\right)'+(1-\vartheta)\frac{D^{\lambda m}f(z)}{z}\right|\\ &=\left|\vartheta\sum_{k=1}^{\infty}\binom{\lambda+k}{k}(k-m-1)a_{k-m}z^{k-m}-(m+1)\vartheta z^{-m-1}\right|\\ &-\mu\left|(1-m\alpha-\vartheta)z^{-m-1}+\sum_{k=1}^{\infty}\binom{\lambda+k}{k}(\alpha(k-m)+1-\vartheta)a_{k-m}z^{k-m}\right|\\ &\leq \sum_{k=1}^{\infty}\binom{\lambda+k}{k}\left[\vartheta(k-m-1)-\mu(\alpha(k-m)+1-\vartheta)\right]a_{k-m}-\mu(1-m\alpha-\vartheta)+\vartheta(m+1)\leq 0. \end{split}$$

Vol. No.5, Issue No. 09, September 2016

www.ijarse.com

Hence by maximum modulus principle, $f \in S^{\lambda,m}(\vartheta, \alpha, \mu)$.

Conversely, assume that f(z) defined by (1) is in the class $S^{\lambda,m}(\vartheta, \alpha, \mu)$.

Hence,
$$\frac{\theta\left(\left(D^{\lambda,m}f(z)\right)-\frac{D^{\lambda,m}f(z)}{z}\right)}{\alpha\left(D^{\lambda,m}f(z)\right)+(1-\theta)\frac{D^{\lambda,m}f(z)}{z}}$$

$$= \left| \frac{-\vartheta(m+1)z^{-m} + \vartheta \sum_{k=1}^{\infty} (k-m-1)\binom{\lambda+k}{k} a_{k-m} z^{k-m-1}}{(1-m\alpha-\vartheta)z^{-m-1} + \sum_{k=1}^{\infty} (\alpha(k-m)+1-\vartheta)\binom{\lambda+k}{k} a_{k-m} z^{k-m-1}} \right| < \mu.$$

Notice that Re(z) < |z| for any z we have,

$$Re \left\{ \frac{\vartheta \sum_{k=1}^{\infty} (k-m-1) \binom{\lambda+k}{k} a_{k-m} z^{k-m} - \vartheta (m+1) z^{-m-1}}{(1-m\alpha-\vartheta) z^{-m-1} + \sum_{k=1}^{\infty} (\alpha (k-m) + 1 - \vartheta) \binom{\lambda+k}{k} a_{k-m} z^{k-m-1}} \right\}$$
(8)

Let $z \rightarrow 1^-$ through real values, (8) yields

$$\sum_{k=1}^{\infty} \binom{\lambda+k}{k} \left[\vartheta(k-m-1)-\mu(\alpha(k-m)+1-\vartheta)\right]a_{k-m} \leq \mu(1-m\alpha-\vartheta)-\vartheta(m+1).$$

Finally sharpness follows if we take,

$$f(z) = z^{-m} + \sum_{k=1}^{\infty} \frac{\mu^{(1-m\alpha-\theta)-\theta(m+1)}}{\binom{\lambda+k}{k} [\theta^{(k-m-1)-\mu(\alpha^{(k-m)+1-\theta})]}} z^{k-m}, \qquad k \ge 1.$$

Corollary (01)

Let $f \in S^{\lambda,m}(\vartheta, \alpha, \mu)$ then $a_{k-m} \leq \frac{\mu(1-m\alpha-\vartheta)-\vartheta(m+1)}{\binom{\lambda+k}{k}[\vartheta(k-m-1)-\mu(\alpha(k-m)+1-\vartheta)]}$ where

 $0 \le \vartheta < 1 \ 0 \le \alpha < 1, 0 < \mu < 1, \lambda > -m, m \in N.$

III. CONVEX SET

Theorem (02): Let the functions $f(z) = z^{-m} + \sum_{k=1}^{\infty} a_{k-m} z^{k-m}$, $a_{k-m} \ge 0$

 $g(z) = z^{-m} + \sum_{k=1}^{\infty} b_{k-m} z^{k-m}, \qquad b_{k-m} \ge 0 \text{ be in the class } S^{\lambda m}(\vartheta, \alpha, \mu). \text{ Then for } 0 \le l \le 1, \text{ the function}$ $d(z) = (1-l)f(z) + lg(z) = z^{-m} + \sum_{k=1}^{\infty} c_{k-m} z^{k-m}$ (9)

Where $c_{k-m} = (1-l)a_{k-m} + lb_{k-m} \ge 0$ is also in the class $S^{\lambda m}(\vartheta, \alpha, \mu)$.

IJARSE ISSN (O) 2319 - 8354 ISSN (P) 2319 - 8346

Vol. No.5, Issue No. 09, September 2016

www.ijarse.com

IJARSE ISSN (O) 2319 - 8354 ISSN (P) 2319 - 8346

Proof: Suppose that each of the functions f and g is in the class $S^{\lambda m}(\vartheta, \alpha, \mu)$. Then making use of theorem (01) we see that,

$$\begin{split} &\sum_{k=1}^{\infty} \binom{\lambda+k}{k} \left[\vartheta(k-m-1) - \mu(\alpha(k-m)+1-\vartheta) \right] c_{k-m} \\ &= (1-l) \sum_{k=1}^{\infty} \binom{\lambda+k}{k} \left[\vartheta(k-m-1) - \mu(\alpha(k-m)+1-\vartheta) \right] a_{k-m} \\ &+ l \sum_{k=1}^{\infty} \binom{\lambda+k}{k} \left[\vartheta(k-m-1) - \mu(\alpha(k-m)+1-\vartheta) \right] a_{k-m} \\ &\leq (1-l) \left[\mu(1-m\alpha-\vartheta) - \vartheta(m+1) \right] + l \left[\mu(1-m\alpha-\vartheta) - \vartheta(m+1) \right] \end{split}$$

 $\leq [\mu(1 - m\alpha - \vartheta) - \vartheta(m + 1)]$, which completes the proof.

IV. EXTREME POINTS

Theorem (03): Let $f_{-m} = z^{-m}$, and

$$f_{k-m}(z) = z^{-m} + \frac{\mu(1-m\alpha-\theta)-\theta(m+1)}{\binom{\lambda+k}{k} [\theta(k-m-1)-\mu(\alpha(k-m)+1-\theta)]} z^{k-m}$$
(10)

For k = 1, 2, ... Then $f \in S^{\lambda,m}(\vartheta, \alpha, \mu)$ if and only if it can be expressed in the form,

 $f(z) = \sum_{k=0}^{\infty} d_{k-m} f_{k-m}(z), \text{ where } d_{k-m} \ge 0 \text{ and } \sum_{k=0}^{\infty} d_{k-m} = 1.$

Proof: Suppose that $f(z) = \sum_{k=0}^{\infty} d_{k-m} f_{k-m}(z)$ where $d_{k-m} \ge 0$ and $\sum_{k=0}^{\infty} d_{k-m} = 1$.

Then

$$f(z) = d_{-m}f_{-m}(z) + \sum_{k=1}^{\infty} d_{k-m}f_{k-m}(z).$$

$$= d_{-m}z^{-m} + \sum_{k=1}^{\infty} d_{k-m} \left(z^{-m} + \frac{\mu(1 - m\alpha - \vartheta) - \vartheta(m+1)}{\binom{\lambda+k}{k} [\vartheta(k - m - 1) - \mu(\alpha(k - m) + 1 - \vartheta)]} z^{k-m} \right)$$
$$= z^{-m} + \sum_{k=1}^{\infty} \frac{\mu(1 - m\alpha - \vartheta) - \vartheta(m+1)}{\binom{\lambda+k}{k} [\vartheta(k - m - 1) - \mu(\alpha(k - m) + 1 - \vartheta)]} z^{k-m}$$

 $= z^{-m} + \sum_{k=1}^{\infty} P_{k-m} z^{k-m} \text{ where } P_{k-m} = \frac{\mu(1-m\alpha-\theta)-\theta(m+1)}{\binom{\lambda+k}{k} [\theta(k-m-1)-\mu(\alpha(k-m)+1-\theta)]}$

By theorem (01), we have $f \in S^{\lambda,m}(\vartheta, \alpha, \mu)$ if and only if $\sum_{k=1}^{\infty} \frac{\binom{\lambda+k}{k} [\ell (k-m-1) - \mu(\alpha(k-m)+1-\vartheta)]}{\mu(1-m\alpha-\vartheta) - \vartheta(m+1)} P_{k-m} \leq 1$,

For
$$f(z) = z^{-m} + \sum_{k=1}^{\infty} P_{k-m} z^{k-m}$$

Vol. No.5, Issue No. 09, September 2016

www.ijarse.com

Hence
$$\sum_{k=1}^{\infty} \frac{\binom{\lambda+k}{k} [\theta(k-m-1)-\mu(\alpha(k-m)+1-\vartheta)]}{\mu(1-m\alpha-\vartheta)-\theta(m+1)} \times d_{k-m} \frac{\mu(1-m\alpha-\vartheta)-\theta(m+1)}{\binom{\lambda+k}{k} [\theta(k-m-1)-\mu(\alpha(k-m)+1-\vartheta)]}$$

$$= \sum_{k=1}^{\infty} d_{k-m} = 1 - d_{-m} \le 1$$

Conversely, assume that $f \in S^{\lambda,m}(\vartheta, \alpha, \mu)$. Then we can show that f can be written in the form

$$f(z) = \sum_{k=0}^{\infty} d_{k-m} f_{k-m}(z).$$

Now $f\in S^{\lambda,m}(\vartheta,\alpha,\mu)$

Therefore from theorem (01)

$$a_{k-m} \leq \frac{\mu(1-m\alpha-\vartheta)-\vartheta(m+1)}{\binom{\lambda+k}{k}\left[\vartheta(k-m-1)-\mu(\alpha(k-m)+1-\vartheta)\right]}$$

Setting

$$d_{k-m} = \frac{\binom{\lambda+k}{k} \left[\vartheta(k-m-1) - \mu(\alpha(k-m)+1-\vartheta)\right]}{\mu(1-m\alpha-\vartheta) - \vartheta(m+1)} a_{k-m} \qquad \qquad k = 1,2, \dots$$

And

$$\begin{aligned} d_{-m} &= 1 - \sum_{k=1}^{\infty} d_{k-m} \\ \text{Then } f(z) &= z^{-m} + \sum_{k=1}^{\infty} a_{k-m} z^{k-m} \\ f(z) &= z^{-m} + \sum_{k=1}^{\infty} \frac{\mu(1 - m\alpha - \vartheta) - \vartheta(m+1)}{\left(\frac{\lambda + k}{k}\right) \left[\vartheta(k - m - 1) - \mu(\alpha(k - m) + 1 - \vartheta)\right]} d_{k-m} \\ &= z^{-m} + \sum_{k=1}^{\infty} (f_{k-m} - z^{-m}) d_{k-m} \\ &= z^{-m} \left(1 - \sum_{k=1}^{\infty} d_{k-m}\right) + \sum_{k=0}^{\infty} d_{k-m} f_{k-m} \\ &= z^{-m} d_{-m} + \sum_{k=1}^{\infty} d_{k-m} f_{k-m} \\ &= \sum_{k=0}^{\infty} d_{k-m} f_{k-m}(z) \end{aligned}$$

¢

IJARSE ISSN (O) 2319 - 8354 ISSN (P) 2319 - 8346

Vol. No.5, Issue No. 09, September 2016

www.ijarse.com V. DISTORTION AND COVERING THEOREM

Theorem (04): Let $f \in S^{\lambda,m}(\vartheta, \alpha, \mu)$ then for 0 < |z| < 1

$$\begin{split} &\frac{1}{|z|^m} - \frac{\vartheta \left(m+1\right) - \mu (1-m\alpha - \vartheta)}{\binom{\lambda+1}{1} \left[\vartheta m + \mu (\alpha (1-m) + 1 - \vartheta)\right]} \left|z\right|^{1-m} \leq |f(z)| \leq \\ &\frac{1}{|z|^m} + \frac{\vartheta \left(m+1\right) - \mu (1-m\alpha - \vartheta)}{\binom{\lambda+1}{1} \left[\vartheta m + \mu (\alpha (1-m) + 1 - \vartheta)\right]} \left|z\right|^{1-m} \end{split}$$

The result (11) is sharp for the function f(z) given by

$$f(z) = \frac{1}{|z|^m} + \frac{\vartheta (m+1) - \mu(1-m\alpha - \vartheta)}{\binom{\lambda+1}{1} [\vartheta m + \mu(\alpha(1-m) + 1 - \vartheta)]} |z|^{1-m}.$$

Proof: Let $f \in S^{\lambda,m}(\vartheta, \alpha, \mu)$ then

$$|f(z)| = \left| z^{-m} + \sum_{k=1}^{\infty} a_{k-m} z^{k-m} \right|$$
$$\leq \frac{1}{|z|^m} + \sum_{k=1}^{\infty} a_{k-m} |z|^{k-m}$$
$$\leq \frac{1}{|z|^m} + |z|^{1-m} \sum_{k=1}^{\infty} a_{k-m}$$

Therefore by theorem (01),

$$a_{k-m} \leq \frac{\vartheta (m+1) - \mu (1 - m\alpha - \vartheta)}{\binom{\lambda+1}{1} [\vartheta m + \mu (\alpha (1 - m) + 1 - \vartheta)]}$$

Therefore

$$|f(z)| \leq \frac{1}{|z|^m} + \frac{\vartheta(m+1) - \mu(1-m\alpha-\vartheta)}{\binom{\lambda+1}{1}[\vartheta m + \mu(\alpha(1-m)+1-\vartheta)]}|z|^{1-m}$$

Similarly, we have

$$|f(z)| \geq \frac{1}{|z|^m} - \frac{\vartheta(m+1) - \mu(1-m\alpha-\vartheta)}{\binom{\lambda+1}{1}[\vartheta m + \mu(\alpha(1-m)+1-\vartheta)]} |z|^{1-m}.$$

Theorem (05): Let $f \in S^{\lambda,m}(\vartheta, \alpha, \mu)$ then for 0 < |z| < 1

IJARSE ISSN (O) 2319 - 8354 ISSN (P) 2319 - 8346

(11)

¢

Vol. No.5, Issue No. 09, September 2016

www.ijarse.com

$$\begin{split} &\frac{m}{|z|^{m+1}} - \frac{\lfloor \vartheta(m+1) - \mu(1-m\alpha-\vartheta) \rfloor(1-m)}{\binom{\lambda+1}{1} [\vartheta m + \mu(\alpha(1-m)+1-\vartheta)]} |z|^{-m} \leq |f'(z)| \leq \\ &\frac{m}{|z|^{m+1}} + \frac{[\vartheta(m+1) - \mu(1-m\alpha-\vartheta)](1-m)}{\binom{\lambda+1}{1} [\vartheta m + \mu(\alpha(1-m)+1-\vartheta)]} |z|^{-m} \end{split}$$

The result (12) is sharp for the function f(z) given by

$$f(z) = \frac{m}{|z|^{m+1}} + \frac{\lfloor \vartheta(m+1) - \mu(1 - m\alpha - \vartheta) \rfloor(1 - m)}{\binom{\lambda+1}{1} [\vartheta m + \mu(\alpha(1 - m) + 1 - \vartheta)]} |z|^{-m}.$$

Proof: Let $f \in S^{\lambda,m}(\vartheta, \alpha, \mu)$ then

$$\begin{aligned} |f(z)| &= \left| z^{-m} + \sum_{k=1}^{\infty} a_{k-m} z^{k-m} \right| \\ &|f'(z)| = \left| -mz^{-m-1} + \sum_{k=1}^{\infty} (k-m) a_{k-m} z^{k-m-1} \right| \\ &\leq \frac{m}{|z|^{m+1}} + \sum_{k=1}^{\infty} (k-m) a_{k-m} |z|^{k-m-1} \\ &\leq \frac{m}{|z|^{m+1}} + |z|^{-m} \sum_{k=1}^{\infty} (1-m) a_{k-m} dz \end{aligned}$$

By theorem (01), we have

$$\left|f^{'}(z)\right| \leq \frac{m}{|z|^{m+1}} + \frac{\lfloor \vartheta(m+1) - \mu(1-m\alpha-\vartheta) \rfloor(1-m)}{\binom{\lambda+1}{1} \lfloor \vartheta m + \mu(\alpha(1-m)+1-\vartheta) \rfloor} |z|^{-m}$$

Similarly, we have

$$\left|f^{'}(z)\right| \geq \frac{m}{|z|^{m+1}} - \frac{\lfloor \vartheta(m+1) - \mu(1-m\alpha-\vartheta) \rfloor(1-m)}{\binom{\lambda+1}{1} \lfloor \vartheta m + \mu(\alpha(1-m)+1-\vartheta) \rfloor} |z|^{-m}$$

VI. ARITHMATIC MEAN

Theorem (06): Let $f_1(z)$, $f_2(z) \dots f_n(z)$ defined by

$$f_i(z) = z^{-m} + \sum_{k=1}^{\infty} a_{k-m,i} z^{k-m} \quad \left(a_{k-m,i} \ge 0, i = 1, 2, \dots, n, k \ge 1\right)$$
(13)

be in the class $S^{\lambda,m}(\vartheta, \alpha, \mu)$. Then the arithmetic mean of $f_i(z)$ (i = 1, 2, ..., n) is defined by

$$h(z) = \frac{1}{n} \sum_{i=1}^{n} f_i(z)$$
(14)

455 | Page

IJARSE ISSN (O) 2319 - 8354 ISSN (P) 2319 - 8346

Vol. No.5, Issue No. 09, September 2016

www.ijarse.com

is also in the class $S^{\lambda,m}(\vartheta, \alpha, \mu)$.

Proof: By (13) and (14) we can write

$$\begin{split} h(z) &= \frac{1}{n} \sum_{i=1}^{n} \left(z^{-m} + \sum_{k=1}^{\infty} a_{k-m,i} z^{k-m} \right) \\ &= z^{-m} + \sum_{k=1}^{\infty} \left(\frac{1}{n} \sum_{i=1}^{n} a_{k-m,i} \right) z^{k-m} \end{split}$$

Since $f_i \in S^{\lambda,m}(\vartheta, \alpha, \mu)$ for every (i = 1, 2, ..., n) so by theorem (01),

We prove that

$$\begin{split} &\sum_{k=1}^{\infty} \binom{\lambda+k}{k} \left[\vartheta(k-m-1) - \mu(\alpha(k-m)+1-\vartheta) \right] \left(\frac{1}{n} \sum_{i=1}^{n} a_{k-m,i} \right) \\ &= \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{k=1}^{\infty} \binom{\lambda+k}{k} \left[\vartheta(k-m-1) - \mu(\alpha(k-m)+1-\vartheta) \right] a_{k-m,i} \right) \\ &\leq \frac{1}{n} \sum_{i=1}^{n} \mu(1-m\alpha-\vartheta) - \vartheta(m+1) \\ &= \mu(1-m\alpha-\vartheta) - \vartheta(m+1) \end{split}$$

Therefore $h(z) \in S^{\lambda,m}(\vartheta, \alpha, \mu)$.

VII. **S** NEIGHBORHOODS

Definition (02): Let $(0 \le \vartheta < 1 \ 0 \le \alpha < 1, 0 < \mu < 1, \lambda > -m, m \in N)$ and $\delta \ge 0$ we define δ neighborhood of function $f \in T_m$ and denote $N_{\delta}(f)$ such that

$$N_{\delta}(f) = \left\{ g \in T_m : g(z) = z^{-m} + \sum_{k=1}^{\infty} b_{k-m} z^{-m} and \sum_{k=1}^{\infty} \frac{\binom{\lambda+k}{k} [\theta(k-m-1) - \mu(\alpha(k-m) + 1 - \theta)]}{\mu(1 - m\alpha - \theta) - \theta(m+1)} |a_k - b_k| \le \delta \right\}.$$
(15)

Theorem (07): Let function $f \in T_m$ be in the class $S^{\lambda,m}(\vartheta, \alpha, \mu)$, for every complex number β with $|\beta| < \delta, \delta \ge 0$.

Let
$$\frac{f(z)+\beta z^{-m}}{1+\beta} \in S^{\lambda,m}(\vartheta, \alpha, \mu)$$
 then $N_{\delta}(f) \in S^{\lambda,m}(\vartheta, \alpha, \mu)$, $\delta \ge 0$.

Proof: Since $f(z) \in S^{\lambda,m}(\vartheta, \alpha, \mu)$, f satisfies (7) and we can write for $n \in C$, |n| = 1, that

$$\begin{bmatrix} \frac{\theta\left(\left(D^{\lambda,m}f(z)\right) - \frac{D^{\lambda,m}f(z)}{z}\right)}{z} \\ \frac{\theta\left(D^{\lambda,m}f(z)\right) + (1-\theta)\frac{D^{\lambda,m}f(z)}{z}}{z} \end{bmatrix} \neq n$$
(16)

IJARSE ISSN (O) 2319 - 8354 ISSN (P) 2319 - 8346

456 | Page

Vol. No.5, Issue No. 09, September 2016

www.ijarse.com

Equivalently, we must have $\frac{(f \cdot Q)(z)}{z^{-m}} \neq 0$, $z \in U^*$ (17)

Where $Q(z) = z^{-m} + \sum_{k=1}^{\infty} e_{k-m} z^{k-m}$

Such that $e_{k-m} = \frac{n \binom{\lambda+k}{k} [l \vartheta (k-m-1) - \mu (\alpha (k-m)+1 - \vartheta)]}{\mu (1-m\alpha - \vartheta) - \vartheta (m+1)}$

 $\text{Satisfying } |_{\boldsymbol{\theta}_{k-m}}| \leq \frac{n\binom{\lambda+k}{k} [\theta \, (k-m-1) - \mu(\alpha \, (k-m) + 1 - \vartheta)]}{\mu(1-m\alpha - \vartheta) - \theta(m+1)} \ \text{ and } k \geq 1, m \in N$

Since $\frac{f(z)+\beta z^{-m}}{1+\beta}\epsilon S^{\lambda,m}(\vartheta,\alpha,\mu)$

By (17)
$$\frac{1}{z^{-m}} \left(\frac{f(z) + \beta z^{-m}}{1 + \beta} * Q(z) \right) \neq 0$$
 (18)

Now we assume that, $\left|\frac{(f \cdot Q)z}{z^{-m}}\right| < \delta$ so by (18), we get

$$\left|\frac{1}{1+\beta}\frac{(f*Q)z}{z^{-m}} + \frac{\beta}{1+\beta}\right| \ge \frac{|\beta|}{|1+\beta|} - \frac{1}{|1+\beta|}\left|\frac{(f*Q)z}{z^{-m}}\right| > \frac{|\beta| - \delta}{|1+\beta|} \ge 0$$

Which is a contradiction by $|\beta| < \delta$. However, we have $\left|\frac{(f \cdot Q)z}{z^{-m}}\right| \ge \delta$. If $g(z) = z^{-m} + \sum_{k=1}^{\infty} b_{k-m} z^{k-m} \in N_{\delta}(f)$, then

......

$$\begin{split} \delta &- \left| \frac{(g * Q)z}{z^{-m}} \right| \le \left| \frac{(f-g) * Q(z)}{z^{-m}} \right| \\ &\le \left| \sum_{k=1}^{\infty} (a_{k-m} - b_{k-m}) e_{k-m} z^{k-m} \right| \\ &\le \sum_{k=1}^{\infty} |a_{k-m} - b_{k-m}| |e_{k-m}| |z|^{k-m} \\ &< |z|^{k-m} \sum_{k=1}^{\infty} \left[\frac{\left(\frac{\lambda+k}{k}\right) [\vartheta(k-m-1) - \mu(\alpha(k-m)+1-\vartheta)]}{\mu(1-m\alpha-\vartheta) - \vartheta(m+1)} \right] |a_{k-m} - b_{k-m}| \qquad \le \delta \end{split}$$

Therefore, $\left|\frac{(g \cdot Q)z}{z^{-m}}\right| \neq 0$ we get $g(z) \in S^{\lambda,m}(\vartheta, \alpha, \mu)$

 $\mathrm{So}\, N_{\delta}(f)\,\,c\,\,S^{\lambda,m}(\vartheta,\alpha,\mu)\,,\qquad\qquad\delta\geq 0\,.$

Þ

IJARSE ISSN (O) 2319 - 8354

ISSN (P) 2319 - 8346

Vol. No.5, Issue No. 09, September 2016 www.ijarse.com

IJARSE ISSN (O) 2319 - 8354 ISSN (P) 2319 - 8346

VIII. PARTIAL SUM

Theorem (08): Let f(z) is defined by (1) and the partial sum $S_1(z)$ and $S_q(z)$ be defined by $S_1(z) = z^{-m}$ and $S_q(z) = z^{-m} + \sum_{k=1}^{q-1} a_{k-m} z^{k-m}$ (q > 1).

Also, suppose that, $\sum_{k=1}^{\infty} c_{k-m} a_{k-m} \leq 1$

where
$$c_{k-m} = \frac{\binom{\lambda+k}{k} \left[\theta \left(k-m-1\right) - \mu\left(\alpha \left(k-m\right) + 1 - \theta\right) \right]}{\mu \left(1-m\alpha - \theta\right) - \theta \left(m+1\right)}$$
 (19)

then we have
$$Re\left\{\frac{f(z)}{s_q(z)}\right\} > 1 - \frac{1}{c_q}$$
 (20)

$$Re\left\{\frac{f(z)}{S_q(z)}\right\} > 1 - \frac{c_q}{1 + c_q}, \qquad (z \in U^*, q > 1)$$

$$(21)$$

Each of the bounds in (19) and (20) is the best possible for $k \in N$.

Proof: For the coefficients c_{k-m} given by (19), it is not difficult to verify

$$c_{k-m+1} > c_{k-m} > 1, \ k = 1,2 \dots$$

Therefore by using the hypothesis (19) we have

$$\sum_{k=1}^{q-1} a_{k-m} + c_q \sum_{k=q}^{\infty} a_{k-m} \le \sum_{k=1}^{\infty} c_{k-m} a_{k-m} \le 1$$
(22)

By setting, $G_1(z) = c_q \left(\frac{f(z)}{s_q(z)} - \left(1 - \frac{1}{c_q} \right) \right)$

$$= \frac{f(z)}{S_q(z)} c_q - c_q + 1$$

$$= \frac{c_q (f(z) - S_q(z))}{S_q(z)} + 1$$

$$= \frac{c_q \sum_{k=q}^{\infty} a_{k-m} z^{k-m}}{z^{-m} + \sum_{k=1}^{q-1} a_{k-m} z^{k-m}} + 1$$

$$= \frac{c_q \sum_{k=q}^{\infty} a_{k-m} z^k}{1 + \sum_{k=1}^{q-1} a_{k-m} z^k} + 1$$

By using (22) we get

Vol. No.5, Issue No. 09, September 2016

www.ijarse.com

$$\left|\frac{G_1(z) - 1}{G_1(z) + 1}\right| = \left|\frac{c_q \sum_{k=q}^{\infty} a_{k-m} z^k}{c_q \sum_{k=q}^{\infty} a_{k-m} z^k + 2 + 2 \sum_{k=1}^{q-1} a_{k-m} z^k}\right|$$

$$\leq \frac{c_q \sum_{k=q}^{\infty} a_{k-m}}{2 - 2 \sum_{k=1}^{q-1} a_{k-m} - c_q \sum_{k=q}^{\infty} a_{k-m}} \leq 1$$

This proof (20). Hence $Re(G_1(z)) > 0$ and we get

$$Re\left\{\frac{f(z)}{S_q(z)}\right\} > 1 - \frac{1}{c_q}$$

Now, in this way we can prove the statement (21) by setting

$$G_{2}(z) = (1 + c_{q}) \left(\frac{S_{q}(z)}{f(z)} - \frac{c_{q}}{1 + c_{q}} \right)$$

REFERENCES

- Atshan, W. G., H.J. Mustafa and E.K. Mouajeeb, 2013. A Linear Operator of a New Class of Meromorphic Multivalent Functions, J. Asi. Sci. Res., 3(7):734-746.
- [2] Altintas. O. and Owa, 1996. Neighborhoods of certain analytic functions with negative coefficients. IJMMS, 19:797-800.
- [3] Atshan, W. G. and S.R. Kulkarni, 2009. On applications of differential subordination for certain subclass of meromorphically p-valent functions with positive coefficients defined by linear operator. J. Ineq. Pure Appl. Math, 10(2): 11.
- [4] Goyal, S.P. and J.K. Prajapat, 2009. A new class of meromorphic multivalent functions involving certain linear operator. Tamsui Oxford J. of Math. Sci, 25(2): 167-176.
- [5] Najafzadeh, S. and A. Ebadian, 2013. Convex family of meromorphically multivalent functions on connected sets. Math, And Com. Mod, 57:301-305.
- [6] Raina, R. K. and Srivastava, 2006. Inclusion and neighborhoods properties of some analytic and multivalent functions. J. In-equal. Pure and Appl. Math, 7(1):1-6.
- [7] Rusheweyh, S., 1981. Neighborhoods of univalent functions. Proc. Amer. Math. Soc, 81:521-527.
- [8] Waggas, G.A. and Ruaa M. Abd, 2013. New class of univalent functions with negative coefficients defined by ruscheweyh derivative. Gen. Math. Notes, 18(2):77-91.

