

460 | P a g e

AN ENHANCE APPROACH OF MOBILE TCP-NEW

RENO USING DIFFERENTIATE VARIOUS PACKET

LOSSES OVER WIRELESS-LINK

Prof. Bhoomika K. Sharma

Computer Engineering Department, Government Polytechnic, Ahmedabad, (India)

ABSTRACT

TCP is dominant transport protocol which used in internet application like telnet, WWW, FTP and email for

data transmission. Tcp is connection oriented protocol. TCP provides a connection orientation, reliable data

delivery and end to end mechanism.TCP have developed many variants for improve performance, fast

retransmission and recovery of multiple losses packets.TCP variants are Tahoe, Reno, New Reno, Vegas, Sack

and many more. In this paper, compare all the variants using simulator NS2.35.TCP New Reno shows better

performance than other variants. TCP New Reno has higher throughput, high packet delivery ratio, less end to

end delay compare to all the variants.

Keywords: TCP/IP, TCP New Reno, Throughput, Packet delivery ratio, End to end delay,

Congestion control.

I. INTRODUCTION

Today in the Internet majority of traffic uses connection oriented services of TCP [4]. The TCP is trustworthy

protocol because it uses acknowledgment mechanism. In the Internet many applications like mail, www, ftp,

telnet etc, uses TCP protocol. The TCP performs better in wire network [4] but in wireless network; degrade the

performance of the TCP. So need to improve mechanism of TCP congestion detection and congestion control as

well as distinguishing congestion loss from random loss in wireless link. Many algorithms have been proposed

for improve performance of TCP. In this paper, we proposed a method for differentiate packet loss from either

congestion or bit error and with the help of this technique we improve throughput of the TCP. Many TCP

variants have been proposed for improve throughput of the TCP like TCP Reno, TCP New Reno, TCP SACK,

TCP Tahoe, TCP Vegas[8].

Among these protocols variants only TCP New Reno gives better performance and successfully deploy now a

days in Linux operating system. But all these variants of the TCP and original TCP are still unable to sense the

cause of packet loss [4]. Hence all loss in the TCP New Reno services is treated as congestion loss, not consider

bit error and Hence reduce window size and data flow [6]. Finally degrade performance of the TCP New

Reno. So in this paper we suggest a new idea for increase performance of the TCP New Reno by using method

of differentiate issue of packet losses. At last this paper also shows algorithm description and compared

simulation results.

461 | P a g e

II. TCP CONGESTION CONTROL ALGORITHM

As show in figure-1, TCP congestion control algorithm has four phases: 1) Slow Start 2) Congestion

Avoidance 3) Fast Retransmit 4) Fast Recovery [1].

2.1. Slow start

TCP uses slow start mechanism to control transmission rate of the sender. This phase has been accomplished by

receiving rate of the acknowledgment from receiver. When TCP establishes connection, the slow start algorithm

set congestion window to one segment. At this phase cwnd = MSS (maximum segment size). When

acknowledgment is return by receiver, the congestion window increase by one segment for each

acknowledgment received. This phase is actually not so much slow, because every time when ACK received,

congestion window increase at double rate, i.e. when sender gets first ACK, sender increases cwnd by two

segments, when sender gets other two ACKs, sender increase cwnd by four segments, so on. At threshold level

cwnd reaches at maximum level and packets loss will trigger and sender goes into congestion avoidance mode

[1].

2.2. Congestion Avoidance

A point during slow start that network is forced to drop one or more packets due to congestion. If this happens,

congestion avoidance is used [1]. In congestion avoidance algorithm, the sender knows about loss of packets

due to congestion when duplicate ACK receive by sender. The sender immediately reduces the cwnd by one half

of current window size, but to at least two segments. If timeout occurs due to congestion, cwnd reduce or reset

to one segment, which automatically puts the sender into slow start mode. However in this phase slow start is

only use up to the halfway point where congestion originally occurred. After this halfway point, cwnd is

increased by one segment. If the congestion was noticed by DUPACK (duplicate acknowledgment), starts fast

retransmission and fast recovery algorithm

2.3. Fast Retransmit

When DUPACK received by sender, it does not know the actual reason that the segment was lost or simply

that segment was delayed. Typically no more than one or two duplicate ACKs should be received when

simple segment has been delayed [7]. But when more than two DUPACKs received by the sender, it is a

strong indication that at least one segment has been lost due to congestion. When three DUPACK are

received, the sender does not wait for time out and immediately retransmit lost segment. This procedure is

called fast retransmission.

2.4. Fast Recovery

With the help of DUPACK, the sender know about other segments receive successfully at receiver. This is a

strong indication that serious congestion may not happen and loss of the segment due to delayed. So instead

of reducing window abruptly by going all the way into slow start, the sender only enters congestion avoidance

phase [7]. The sender does not set cwnd to one segment as in slow start phase, but resumes transmission with

larger window and continuous incrementing. This allows better throughput and performance under moderate

congestion. To summarize this section fig. 1 show what typically data transfer phase using TCP congestion

control might look like.

462 | P a g e

Fig1. Congestion Control Algorithm in TCP

III. PERFORMANCE OF TCP OVER WIRELESS LINK

The TCP is reliable and pervasive transport layer protocol. Traditional TCP suffer from congestion issue like

packet losses due to congestion or timeout. So traditional TCP is slower protocol compare to UDP. So several

variants of the TCP have been proposed like TCP Reno, TCP New Reno, TCP Tahoe, TCP Westwood, TCP

Vegas and TCP SACK [2]. In this section we discuss performance of different variants of the TCP and then

we discuss our modified algorithm for improve performance of TCP by modifying TCP Westwood [6].

3.1. TCP Reno

In 1990, TCP Reno has been developed and TCP Reno uses previous slow starts [7] and retransmits timer 2

mechanism & improves by adding fast recovery algorithm and prevent from empty transmission path or

pipeline. For indication of packet loss, TCP Reno uses 3 DUPACK (duplicate acknowledgment) mechanisms,

i.e. whenever we receive 3 DUPACK then it assume that packet loss during transmission and retransmit packet

without waiting of timeout [2]. Then it reduces window size and set cwnd (congestion window) to half [2]. But

limitation of Reno are, it does not suitable when multiple packets loss in single window, window does not

continuously modified and Reno leads to half window size after recovering from first packet loss so subsequent

losses can’t be identify 3 DUPACK. Another problem associated with Reno is packets arriving out of order at

receiving end can yield DUPACK when in fact there is no loss or error. TCP Reno does not work for small

window size like less than 4 packets because it does not provide 3 DUPACK [2].

3.2. TCP New Reno

Limitations of TCP Reno overcome by another variant call TCP New Reno [5]. At 1996, Hoe gives new

variants called New Reno. The New Reno performs better compare to Reno when multiple packets losses occur.

New Reno modified fast recovery or fast retransmit algorithm to improve throughput of TCP and over here fast

indicates it does not wait for time out when not getting an ACK for a packet [5]. TCP New Reno uses two types

of ACKNOWLEDGMENTS 1) a full ACK 2) a partial ACK. Full ACK acknowledges all the outstanding

packets and partial ACK acknowledges some outstanding packets. With the help of partial ACK, TCP New

463 | P a g e

Reno does not exit from fast recovery but indication of packets immediately following the acknowledged packet

has been lost and retransmitted immediately. In this manner TCP New Reno modified fast recovery algorithm.

But limitation of TCP New Reno is, it can’t detect delay and it is limited to resend at one lost packet per RTT

[5].

3.3. TCP Tahoe

In 1988, TCP Tahoe was design as modification of traditional TCP for improves performance of TCP. It uses

different mechanism of TCP like slow start, congestion avoidance and fast retransmits [8]. Fast retransmit is

main advantage of TCP Tahoe because sender does not wait for timeout when any segment loss during

transmission. When any loss occur in network and receive DUPACKs, sender immediately retransmit segment

without waiting of timeout period. But limitation of TCP Tahoe is that packet loss is detected after whole

timeout interval. So Tahoe degrade performance in this case, when loss detected after time out. Tahoe uses

modified RTT (round trip time) estimator [8].

3.4. TCP Westwood

Westwood is modified version of TCP Reno [8]. During loss of segments, Reno reduces size of congestion

window (cwnd) to half and degrades the performance whereas Westwood estimates the available bandwidth of

the connection with the help of rate at which ACKs received. This delivery rate is calculated from ACK

information. The estimated bandwidth uses for fast recovery when packet loss occurred [6]. TCPW tries to

select appropriate cwnd and ssthresh (slow start threshold). Selected cwnd base on bandwidth estimator

improves the performance compare to TCP Reno. TCPW can’t differentiate issue of segment loss through either

congestion or random loss in wireless link.[6]

3.5. TCP Vegas

Compare to other TCP variants, TCP Vegas uses better bandwidth estimation scheme [7]. Vegas estimates

bandwidth using current data flow rate and expected data flow rate. Vegas stores current values of system clock

and segment transmission time. So it is able to know exact RTT for each sent segment [8]. Vegas does not wait

for packet loss, it adjust cwnd as soon as it detects congestion in the network. Also retransmission mechanism is

better than other variants, it retransmits loss packet as soon as it receives a single DUPACK [7]. Vegas does not

wait for 3 DUPACK as in Reno. It does not reduce congestion window unnecessarily. When sender receives

single DUPACK, it checks if (current time – packet transmission time) > Round Trip Time. If this condition is

true, the sender provides a retransmission without waiting of timeout or 3 DUPACK [8].

3.6. TCP SACK

SACK is a technique that can help reduce unnecessary retransmission on the part of sender [5]. In the TCP

SACK, receiver can offer the feedback to the sender about successful receiving segments in the form of

selective acknowledgment option. It uses option field of the TCP header. In the SACK option fields tell the

sender which contiguous segments it has received [5]. Receiver includes SACK information in the TCP header

only when arrival of out of order packet at receiving ends. It enters the fast retransmit phase when loss occurs

and it exists when all the sent data has been acknowledged. Limitation of SACK is, it can’t differentiate loss due

to congestion or bit error on the wireless network [5].

464 | P a g e

IV. PERFORMANCE ISSUE OF TRADITIONAL TCP New Reno

TCP New Reno does not differentiate reason of packet loss either through congestion or through bit error on

wireless link [6]. For recovery of packet loss, traditional TCP used time out and set cwnd to 1. TCP Tahoe used

fast recovery algorithm to retransmission of segments, but it also set cwnd to 1. TCP Reno used 3 DUPACK

mechanisms and enters into fast

recovery mode when gets 3 DUPACK but does not work with multiple loss of segments. TCP New Reno deal

with multiple losses but not deal with bandwidth delay [5]. SACK used selective ACKs, but does not

differentiate reason of loss [5]. Compare to other variants TCP New Reno performs better and improve the

throughput on wireless link [9]. But it also reduces congestion window either at time out or at 3 DUPACKs.

But there is no need to reduce cwnd to each and every case like bit error or random loss. TCP New Reno

always reduce cwnd either set to half or set to 1 [9]. Simply TCP New Reno does not distinguish congestion

loss from bit error loss on wireless link.

V. PROPOSED ALGORITHM FOR MODIFIED TCP New Reno

In this paper we describe an algorithm for Modified TCP New Reno show in figure-2. Initially client enters into

slow start phase of TCP. The traditional TCP New Reno cannot differentiate reason of segment loss through

either congestion or bit error on wireless link [9]. Therefore in this paper we proposed new approach for finding

reason of loss with the help of flag (F) of TCP Header. We use 1 bit flag of TCP Header for strong indication of

congestion or bit error. We use F = 0 for congestion and F = 1 for bit error. This algorithm states if any segment

loss due to any reasons during communication, receiver has been received out of order sequence numbers. When

receiver receives out of order sequence number, it will start observing timing of next successive segments and

continuous retrainsmits DUPACK. If next successive segments suffer from delay, then receiver assume that

congestion occurs in the medium and segment loss due to congestion. So set FLAG = 0 in the 3
rd

 DUPACK

(duplicate acknowledgment). If next successive segments does not suffer from delay and received continuously

without delay, then receiver assume that congestion not occur in medium. So set FLAG = 1 in the 3
rd

 DUPACK.

In this algorithm we use 3
rd

 DUPACK because 3
rd

 DUPACK is only indication of packet loss in TCP New

Reno. In the TCP New Reno, when the ender receives 3 DUPACKs, it immediately reduces cwnd (congestion

window) to half without knowledge of reason of loss through either congestion or bit error [6]. So it degrades the

performance in real time communication. So in this paper we modified TCP New Reno protocol to improve the

performance of TCP New Reno. In our case when sender receives 3 DUPACKs, it does not immediately reduce

congestion window to half. But sender observes the FLAG status of 3
rd

 DUPACK. If F = 0 in 3
rd

 DUPACK, Sender

assumes that packet loss due to congestion and set cwnd to half & enter into fast retransmit phase of TCP. If F = 1 in

3
rd

 DUPACK, Sender assumes that packet loss due to bit errorand not reduce cwnd & enter into congestion

avoidance phase of TCP. So in this way In the TCP New Reno, when the ender receives 3 DUPACKs, it

immediately reduces cwnd (congestion window) to half without knowledge of reason of loss through either congestion

or bit error [6]. So it degrades the performance in real time communication. So in this paper we modified TCP New

Reno protocol to improve the performance of TCP New Reno. In our case when sender receives 3 DUPACKs, it does

465 | P a g e

not immediately reduce congestion window to half. But sender observes the FLAG status of 3
rd

 DUPACK. If F = 0 in

3
rd

 DUPACK, Sender assumes that packet loss due to congestion and set cwnd to half & enter into fast retransmit

phase of TCP. If F = 1 in 3
rd

 DUPACK, Sender assumes that packet loss due to bit errorand not reduce cwnd &

enter into congestion avoidance phase of TCP. So in this way we improve the performance and our results

show difference performance of TCP New Reno and modified TCP New Reno.

Fig. 2 shows proposed detail algorithm for Modified TCP New Reno. It gives better performance and

throughput compare to traditional Linux based TCP New Reno. In this algorithm of MTCP- New Reno, we use

notation like cwnd = Congestion Window, F = Flag of TCP header, SEQ = Sequence Number, RX_SEG =

Receiving Segment, DUPACK = Duplicate Acknowledgment. This modified algorithm support feature of

traditional TCP New Reno like slow start, congestion avoidance, fast retransmit, and fast recovery phase.

Figure2. Proposed Algorithm for Modified TCP New Reno.

As shown in fig.2, client initially set cwnd = 7, and at particular time t1 client sends frame-0 and server stores frame-0

inside buffer and send back ACK-1. The client sends next successive frames without waiting of acknowledgment

because cwnd set to 7. The server receives frames in out of order because frame-1 loss due to any reason (congestion

or bit error). The server receives first frame 2 instead of frame 1 so it starts observing time for next successive frames

and send back DUPACKs of frame 1. If delay occurs in next successive frames, the server assumes that congestion

occurs in the medium and set FLAG = 0 in 3
rd

 DUPACK. When 3 consecutive DUPACK receives by client, it

assumes that loss occurs inside medium and without immediately reducing of cwnd, first it checks the status of flag in

TCP header of 3
rd

 DUPACK. If FLAG = 0, client assumes that frame loss due to congestion and set cwnd to

half, enters into fast retransmit phase of TCP. If FLAG = 1, client assumes that frame loss due to bit error and

does not change status of cwnd, enter into congestion avoidance phase of TCP. So using modified TCP New

Reno and simulation results of NS-2, we notice that improve throughput compare to traditional TCP New Reno.

466 | P a g e

VI. SIMULATION TOPOLOGY

In this paper we use NS-2.35 simulator for analysis our results with TCP New Reno [3]. For our algorithm

we consider following topologies. We introduce error 0.001 and 0.01 in following scenarios over wireless

link.

Figure3. Simulation Scenario - 1

As show in fig.3, in this topology we use FTP traffic of TCP and use 15 nodes over wireless link. First

scenarios-1 show with congestion and as shown in figure-4, scenarios-2 shows same topology with the error

over wireless link. We change error rate in scenario-2 and measure performance of Modified TCP New Reno.

Figure4. Simulation Scenario – 2

As shown in fig.4, we also measured the performance of our algorithm on wired topology of NS-2 with using 4

nodes [3]. After this simulation we get better throughput compare to TCP New Reno. Figure-4 shows wired

topology with using modified TCP New Reno with FTP traffic.

So finally our algorithm works better in both topologies like wired and wireless. Modified TCP New Reno can

be easily implemented in open source operating system and increase the performance of real time

communication.

467 | P a g e

Figure5. Simulation Scenario - 3

VII. SIMULATED RESULTS:

We simulate our result with the help of NS-2.35 using XGRAPH utility [3]. Fig.6 shows the First result, its

comparison between TCP New Reno (Green line) and Modified TCP New Reno (RED line) for throughput

(Throughput Vs Time). Fig.6 shows the throughput performance of both protocols. Y-axis shows throughput

(Mbps) and X-axis shows the time (sec). We run this simulation up to 60 sec. and gets better throughput

modified TCP New Reno at error rate 0.001 with high congestion issue. At 0.001 error rate we receive 16048

segments using modified TCP New Reno, whereas using traditional TCP New Reno we receive 15097 segments

successfully at receiver end. We use FTP traffic of TCP in both the simulation results. Our simulation results

show that we get throughput upto 140 Mbps using modified TCPW whereas using traditional TCP New Reno

gives upto 110 Mbps data rate after completed 60 sec simulation in NS-2.35 [11].

Figure6. Throughput Vs Time

Fig.7 shows results at varied bit error rate, result A gives throughput at 0.00 error rate, result B at 0.001 error

rate and result C at 0.01 error rate using modified TCP New Reno. So conclusion of our results is that we

get better through compare to TCP New Reno during bit error rate.

468 | P a g e

Figure7. Throughput Vs Time (at varied bit error rate)

Fig.8 shows the result of congestion window v/s time. In this case we notice that we get maximum throughput at

high congestion window up to 100 compare to traditional TCP New Reno at 90 congestion window during 10

sec simulation on NS-2 [3]. Green line is indication of Modified TCP New Reno and Red line is indication of

traditional TCP New Reno.

Figure8. CWND Vs Time

469 | P a g e

VIII. CONCLUSION

Traditional Linux based TCP New Reno does not differentiate issues of loss either through congestion or

through bit error [6]. So it reduces congestion window in all cases and degrade the performance. So in this paper

we use a novel approach for distinguish issue of segment loss with the help of flag indication of TCP header and

continuous monitoring successive receiving segments. At sender end, we set congestion window (cwnd) as per

issue of packet loss. Our analysis results shows better throughput compare to traditional TCP New Reno. Using

this algorithm we get better performance over wireless link and easily deploy in Linux operation system for

better Internet services and real time communication.

REFERENCES

[1] Ahmed Khurshid; Md Humayun kabir; Rajkumar Das,“Modified TCP New Reno for wireless

network,” in Computer and Information Technology (ICCIT), IEEE on , vol., no., pp.425-427, April 2015

[2] Dhar, P.K.; Khan, M.I.; Deb, K.; Hassan, P.M.M., "A modified New Reno for performance enhancement

of TCP in wireless network," in Strategic Technology (IFOST), 2010 International Forum on , vol., no.,

pp.450-453, 13-15 Oct. 2010

[3] Kowsar, M.M.S.; Islam, M., "TCP performance enhancement over IEEE 802.11," in Computer and

Information Technology (ICCIT), 2012 15th International Conference on , vol., no., pp.326-331, 22-24

Dec. 2012

[4] Khurshid, A.; Kabir, M.H.; Prodhan, M.A.T., "An improved TCP congestion control algorithm for

wireless networks," in Communications, Computers and Signal Processing (PacRim), 2011 IEEE Pacific

Rim Conference on , vol., no., pp.382-387, 23-26 Aug. 2011

[5] Krishnan, S.B.; Moh, M.; Teng-Sheng Moh, "Enhancing TCP Performance in Hybrid Networks with

Fixed Senders and Mobile Receivers," in Global Telecommunications Conference, 2007. GLOBECOM

'07. IEEE , vol., no., pp.5265-5270, 26-30 Nov. 007

[6] Luo Yongmei; Jin ZhiGang; Zhao Ximan, "A New Protocol to Improve Wireless TCP Performance and Its

Implementation," in Wireless Communications, Networking and Mobile Computing, 2009. WiCom '09.

5th International Conference on , vol., no., pp.1-4, 24-26 Sept. 2009

[7] Prasanthi Sreekumari and Sang-Hwa Chung, “TCP NCE: A unified solution for non-congestion events to

improve the performance of TCP over wireless networks ”, EURASIP Journal on Wireless

Communications and Networking, 2011

[8] Prasanthi, S.; Sang-Hwa Chung, "An Efficient Algorithm for the Performance of TCP over Multi-hop

Wireless Mesh Networks," in Information Technology: New Generations (ITNG), 2010 Seventh

International Conference on , vol., no., pp.816-821, 12-14 April 2010

[9] Dr Neeraj Bhargava, Dr Ritu Bhargava, Manisha mathuriya and Shilpi Gupta, “Analysis of different

congestion avoidance algorithms” in IJCNWC journal (2250-3501) volume 3-No.1, pp.4-5, February 2013

[10] RFC: 2001, “TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery

Algorithms”,January 1997

[11] RFC: 1323, “TCP Extension for High Performance”, 1992

