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ABSTRACT 

This paper examines the utilization of combination model technique to model the standardized residual exponential 

generalized autoregressive conditional heteroscedastic (EGARCH) errors. The technique combine white noise 

(CWN) is found to be more efficient and overcome EGARCH weaknesses. The estimation results using Combine 

White Noise model satisfies stability condition and passes stationary, serial correlation, and the ARCH effect tests. 

It fails the histogram-Normality tests but passes the Levene’s test of equal variances. Combine White Noise has 

minimum values of information criteria. From the results of the dynamic evaluation forecast errors, Combine White 

Noise has the minimum forecast errors which are indications of better results when compare with the EGARCH 

model dynamic evaluation forecast errors. Combine White Noise processes show the best fit with forecast accuracy. 
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I. INTRODUCTION 

This paper presents an approach to model the standardized residual GARCH errors with combination model 

procedures to overcome of the weaknesses in GARCH error term for more efficient results. This will meet the needs 

of the economy, for the policy makers to have reliable planning and accurate forecasting [1, 2, 3, 4, 5, 6].  

Researchers have been so much worried about the error term that conceal some vital information, which supposed to 

have been modeled, of which may make the model ineffective and  inefficient in a way, if it is not correctly griped .  

This error term is an unobservable random variable in the empirical model [7].  The error term is made up of mostly 

missing variables, error in variables and simultaneous causality, and this error term components have made it 

difficult to find an accurate model at a given time. Researchers have been developing several models at different 
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time to overcome this challenge, which actually have efficient estimation for some time. The large data size and 

high data frequency determine the suitable model that will produce a better result at a particular time, and when the 

data size increases then the model will not produce a good result.  

The belief of the econometricians are, whatever is left out from the theoretical regression models is complemented 

by the error terms of the estimated models. The theories provide incomplete explanations of economic systems.  

Accordingly, the econometrics extensive tradition has seen the dynamic evolution of the economy as a controlling 

force, having relationship directly with the theory [7]. 

The conviction that errors exclusively signify random shocks that is responsible for the production of business 

cycles,  but fails to recognize that the properties of regression residuals are generated by the empirical model, 

sample data, and estimation process. Alternatively, in relation to any economic theory, the “innovational residuals” 

model design criterion can result in errors that cannot be interpreted. In the history of time series econometrics, the 

econometricians acknowledge these clarifications and incorporate the interpretations into a frame work that gives a 

sensible consistent manner of approach to handle the errors [7]. 

[8] argue that insufficient information about data collection procedure and the proxy of latent variables in a 

regression model can create measurement errors. Measurement errors are inevitable when the number of parameters 

in a model cannot take care of the number of unknowns in the model. 

[9] recommends that reporting a separated variant of the data is required to a regression model in which the data 

gathering organisation observes data with serially associated errors. Sargent demonstrates that more steps are 

required to estimate the parameters, when the information is not error free. 

The above are the ways the stochastic models integrate error terms.  The error term can also be assumed as white 

noise.  White noise series is when the time series is stationary, having a sequence of unrelated variables with 

constant mean and constant variance. It is also called innovations or shocks in economic time series. The White 

noise series being modeled are referring to as combine white noise model. 

Therefore, the Combine White Noise uplifted the EGARCH models weaknesses to model the error terms for 

appropriate estimation and has reasonable outputs.  

II. METHODOLOGY 

Considering the autoregression model: 

      ttt yy   1                                                                                                                                                (2.1) 

Allow stochastic procedure of a real-valued time to be t , and the entire information through t time is  . The 

GARCH model is: 
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The GARCH models which have been exhibiting unequal variances (heteroscedastic errors) behaviors in the process 

of estimation, its error term can be simplified. The standardized residuals of GARCH errors which are unequal 

variances are decomposed into equal variances (white noise) in series to deal with the heteroscedasticity.  Each 

equal variances series will be modeled using regression model. 

Moving average process is considered for the estimation of these white noise series which is called Combine White 

Noise: 
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It can be written as: 

           tt UY  ,      ),0(~ 2
ctU 

                                                                                                                           (2.7)
 

Equation (2.6) can be inverted if the coefficient of absolute values of error term is less than one:  

         tjtYQ 1            for   1|| 1 Q  

          ttY  ,               ),0(~ 2
ct  

                                                                                                                     (2.8)
 

where A(L) + B(L) + … = Q which are the matrix polynomial, tQ = tU  which is the error term of combine white 

noise model and 
2
c   is the combination of equal variances. 
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The combine variances of the combine white noise are: 
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Considering the best two variances in the best two models produced by the Bayesian model averaging output. The 

combine variance follows: 
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The variance of errors, 
2
c  in the combine white noise can be written: 
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where the balanced weight specified for the model is W. The least of 
2
c  appearing, when the equation is 

differentiated with respect to W and equate to zero, obtaining: 
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Where   is the correlation; intra-class correlation coefficient is used for a reliable measurement. 

III. DATA APPLICATION 

The France Gross Domestic Product (GDP) quarterly data from 1960Q3 to 2015Q2 is used for this study. It is 

retrieved from the DataStream of Universiti Utara Malaysia library. The data show an upward trend which is a 

behavior of non-stationary. 

The data is transformed in returns series to observe the volatility clustering, long tail skewness and excess kurtosis 

which are the characteristics of heteroscedasticity. The graph exhibits irregular variances that indicate volatility.   

The table 1 reports that, there are right tail skewness, excess kurtosis, and Jarque-Bera test is highly significant, that 

is an indication of non-normality. Standard deviation is less than one.  

The table 1 above shows the ARCH LM tests for the effect of heteroscedasticity in the data series; F-Statistic and 

Obs*R-squared are highly significant which indications ARCH presence in the data.  

Table 1: Histogram-Normality and ARCH Tests 
Normal test   

 Coefficient/ value probability 

Standard deviation 0.920518  

Skewness 0.763937  

Kurtosis 22.97828  

Jarque-Bera 3663.369  0.0000 

ARCH Tests   

F-Statistic  0.0000 

Obs*R-squared  0.0000 
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The table 2 below shows that the AIC, BIC and HQ minimum information criteria with log-likelihood that are used 

to select the appropriate model between ARCH and GARCH estimation. EGARCH model is choosing because it has 

minimum values of AIC, BIC and HQ with high log-likelihood values. 

 Combine White Noise (CWN) estimation has the minimum information criteria with high log likelihood. The CWN 

estimation gives better results with minimum information criteria and high log likelihood when compared with the 

GARCH estimation. 

Table 2 .France data ARCH, EGARCH and CWN models coefficients, information criteria and log 

likelihood values 

                   AIC               BIC  LL 

ARCH 0.4745 0.7089                     1.9446            2.0067                      -207.9622 

 (0.0003) (0.0000) 

EGARCH 0.0.5839 0.4966 -0.1223        0.6544      1.7018              1.8104                        -178.4925 

 (0.0000) (0.0018) (0.1715)       (0.0000) 

CWN                       -4.6571            -4.564                           515.95 

 

Note:   is the coefficient of the mean equation,   and   are the coefficients of the variance equations, while   is 

the coefficient of the log of variance equation. In the parentheses are the probability values (PV). 

In GARCH modeling, the leverage is not possible because, any restriction imposed is positivity restriction which has 

no leverage effect [5, 6]. To avoid the above challenges of leverage effect in EGARCH, the standardized residuals 

graph of the GARCH model (GARCH errors) with unequal variances and zero mean are decomposed into equal 

variances series (white noise series). The graphs of equal variances with mean zero being obtained from graphs of 

GARCH errors are white noise series. These white noise series are fit into regression model to make each a model. 

The implementation of Bayesian model averaging produces two best models [10]. For confirmations, fitting linear 

regression with autoregressive errors; 220 is the number of observation, with zero mean and variance one 

[11].Therefore, the best two models are white noise models. 

Table 3 shows that independent samples test for testing whether data set of the two white noise models have equal 

variances or not. The test in Table 3 reveals that the variability in the distribution of the data is no significantly 

different value which is greater than the p-value 0.05. Thus, the model had equal variances [12]. 
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Table 3: Levene’s test for equal variances, Independent Samples Test 

  Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

  

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence 

Interval of the 

Difference 

  Lower Upper 

B Equal 

variances 

assumed 

1.414 .235 2.159 438 .031 .05909 .02737 .00530 .11288 

Equal 

variances not 

assumed 

  

2.159 255.236 .032 .05909 .02737 .00519 .11299 

 

Table 4 reveals that CWN for France data estimation appeared to be more appropriate model for estimation and 

forecasting in comparison with EGARCH models. In France CWN have minimum values of root mean square error 

(RMSE) and mean absolute error (MAE) with high mean absolute percentage error (MAPE) when compared with 

EGARCH forecast errors. 

 
Table 4 The summary of CWN and EGARCH models estimation and forecasting evaluation for 

France data set 
 CWN EGARCH 

Stationary Stationary Stationary 

Log Likelihood 515.95 -178.49 

AIC -4.6571 1.7018 

BIC -4.5642 1.8104 

Correlogram Std Resid 

Squared/Lag Structure 

Stable Model 

Specified 

Correctly 

Histogram-Normality Tests Not Normal Not Normal 

ARCH Test No ARCH  

effect 

No ARCH  

effect 

RMSE 0.0532 0.6684 

MAE 0.0145 100.07 

MAPE 1.8169 0.3192 
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GRMSE 0.0021 0.3192 

Correlogram Std Resid 

Squared/Lag Structure 

Stable Model 

Specified 

Correctly 

Histogram-Normality Tests Not  Normal Not Normal 

Heteroscedasticity Test  No ARCH 

effect 

No ARCH 

effect 

 

IV. CONCLUSION 

The CWN estimation reveals that minimum information criteria and high log likelihood values in France data 

estimation are better than EGARCH information criteria and log likelihood values. The EGARCH estimation reveals 

that the data set contain leverage effect. CWN have the minimum forecast errors which are indications of better 

results when compared with the EGARCH model dynamic evaluation forecast errors in France data set forecast 

evaluation [13, 14]  

Based on every result in the empirical analysis of the France GDP data set, CWN is the more appropriate model. For 

this reason, CWN is recommended for modeling the leverage effect in the data that exhibits heteroscedasticity.    
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