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ABSTRACT  

 

Now a day, ultra-wideband (UWB) energy detectors are developed enormously with compressed sensing (CS) 

theory inenvironment of multipath fading. Wideband communication is sensitive to narrowband interference 

(NBI), so it is necessary for efficient UWB energy detector to mitigate NBI-affected measurements without 

harming samples containing important information. According to the traditional sampling 

theorem,UWBrequires huge bandwidth for short range communication with little utilization. To avoid this 

wastage of frequency band, CS process usessub-Nyquist rate and provides compressedversion of received 

signal. In this paper,reconstruction-based energy detectoris presented which is robust to NBI. In this 

article,notch out method is employed at the detector for the mitigationof NBI-affected measurements. Energy 

detection of the UWB detector before adding NBI and aftermitigating NBI is compared. Experimental results 

show that the presented energydetector is robust to NBI due to superior performance of the notch out method.  

Keywords: Compressed sensing, Energy detector, Narrowband interference, ultra-wideband 

Communication field  

 

I. INTRODUCTION   

Digital communication is evident of growth in applications which consists signals of very high bandwidth. To 

receive these signals, reducing the sampling rate is the challenge. Compressive sampling gives reduced and 

efficient sampling than the traditional sampling rate. The ultra-wideband (UWB), impulse-radio (IR) signals are 

most attractive because of their unique properties such as fine time resolution, high user capacity as well as low 

probability of interception and detection [1], [2]. But, the big problems in employment of IR-UWB is power 

consumption in sensitivity of wide band signals towards narrow band interference (NBI) and analog to digital 

converter (ADC). 

 According to the FCC, UWB signals are defined as signals having a fractional bandwidth greater than 20% or 

signals having an absolute bandwidth greater than 0.5 GHz [3]. There are two techniques to generate a UWB 

signal. One is carrier-lessand other is carrier based. Earlier technique uses spreading schemes like frequency 

hopping or direct sequence which makes architecture complex due to presence of mixer and other circuitry. The 
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next technique is also known as impulse radio (IR) this technique uses transmission of short pulses in time 

domain which occupies the complete frequency band. Its transceiver is simpler than the earlier technique of 

UWB signal generation. Also, the transmit power in IR-UWB can be decreased by transmitting same 

information over multiple frames, with each frame transmitting at a very low power.  

According to Shannon-Nyquist-Whittaker-Kotel nikov sampling theorem [4]-[5], a band-limited signal x(t) can 

be recovered fully from its sampled version x(iT) only if 𝑇≤1/(2𝐹𝑚𝑎𝑥). In other words, sampling rate should be 

equal to or greater than twice the maximum frequency of the signal so that signal is reconstructed completely. 

But the signals with large bandwidth like UWB signals which is having 3.1-10 GHz bandcarry less information, 

so that they are sparse in nature. If those signals are sampled at traditional sampling rate, ADC can be 

overburdened and it requires lots of power [6]-[7], so they need to be sampled according to the amount of 

information contained in the signal. It can be achieved by CS theory which is proposed by D. L. Donoho and E. 

J. Candes in [8]-[9]. According to CS theory, the sparse signal can be recovered properly with lower than the 

traditional sampling rate. The measurement matrix and reconstruction algorithm play important role for efficient 

performance of CS theory. In this paper, we use CS to reduce receiver sampling rate and implementation 

complexity as well as, digital notch to eliminate narrow band interference (NBI) effect. 

 

  Our contribution:  

 We show here, the NBI symbol affects severely when added with UWB symbol by using energy detection 

equation provided in [10].  

 We use the digital notch proposed in [11], to eliminate the NBI affected measurements from the 

compressed version of the received vector.  

 By using energy detection and bit error probability equations for Gaussian distributed channel provided in 

[10], we compare the detector before adding NBI and after notching out NBI.  

 

II. LITERATURE SURVEY  

The field of UWB communication employed with CS theory is under huge development. In [12] the receiver 

which is proposed for IR-UWB communication using CS is characterized by bursty traffic and severe power 

constraints. The receiver can acquire and track the channel response in any of the environmental conditions and 

severe inter-symbol interference. The receiver proposed in [12] is further extended in [11] using notch out 

method for NBI mitigation. The CS theory reconstructs the sparse signal and also provides the generalized 

likelihood radio test (GLRT) detector for I-UWB [13]. The GLRT detector of [13]is again developed with 

matching pursuit (MP) algorithm for pilot assisted IR-UWB detection in [14]. The IR-UWB detector proposed 

in [14] to suppress NBI using subspace detection which also further extended in [15]. The signal can be 

theoretically sub-sampled by projection matrix according to CS theory, but the multiplication of matrix and 

signal needs already sampled received signal. The random matrix is not realizable using hardware also under-

sampling is uncontrollable. In CS measuring projection stage, as described in [16] these problems can be solved 

by replacing random matrix with analog to information converter (AIC). But, this method does not guarantee the 

precise reconstruction of sampled signal.  
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Novel differential detection method is proposed which exploits CS framework and optimization problem is 

formulated to jointly reconstruct the sparse signal and differentially encoded data in [17]. The differential 

detection method proposed in [17] is further extended in [18] for multiple symbols using generalized likelihood 

ratio tests. In [19]-[20], for CS based UWB communication methods for channel estimation are provided. In 

[21], time delay estimation is provided. In [10] there are two types of CS based UWB energy detectors proposed 

one is direct compressed energy detection and other is reconstruction based energy detector. TABLE 2.1 shows 

the difference between both the detectors [10].  

From the bellow table, we can say that both the detectors are importantin different situations with their own 

applications. But these energy detectors are very sensitive to the NBI because of large bandwidth symbol. The 

NBI affected IR-UWB measurements can be mitigated using method proposed in either [11] or [15]. 

 

Table 2.1 Comparison of direct compressed and reconstruction based UWB energy detector 

[10]. 

Features 
Direct compressed energy 

detector 

Reconstruction based energy 

detector 

Type of samples Compressed samples Reconstructed samples 

Timing information Cannot be relaxed Can be relaxed 

Measurement process Identical Independent 

Theoretical BEP 
Requires orthogonal 

measurement matrix 

Requires random measurement 

matrix 

 

TABLE 2.2 comparisons of NBI mitigation methods 

Features [15] [11] 

Pulsing rate independent Low 

Timing issue Robust Requires perfect timing 

Discrete cosine transform (DCT) Do not require Requires 

Domain of CS ensembles Fourier Time 

 

III. METHODOLOGY  

Compressed sensing  

For conversion of the analog signal into digital with the traditional method, first step is to sample it and after 

that compress by eliminating zero or near to zero valued samples. For sampling the complete signalin this 

processlarge power consumption is required. But the compressed sensing unifies both, the compression and 

sampling processes so it is called as compressive sampling [8]-[9]. Compressed sensing (CS) is a signal 

processing technique for efficiently acquiring and reconstructing a signal, by finding solutions to 

underdetermined linear systems. 

For sampling the complete signal in this process  
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Fig. 1 Process of compressed sensing theory 

  As shown in Fig. 1, in the process of CS, reconstruction algorithm and measurement matrix have  important 

role in reconstructing and compressing the signal respectively. The linear system to be passed through the CS 

process can be considered as, 𝑌=𝜙𝑋⋯ (1) where, 𝑋 is an 𝑁×1 vector of optimization variables, 𝑌 is an 𝑀×1 

vector of compressed measurements as𝑀<𝑁 and 𝜙is an 𝑀×𝑁 dimensional measurement matrix. Here, sparse 

vector is X which contains less number of non-zero valued samples than the zero valued samples. The 

measurement matrix converts the signal as ℝ𝑁→ℝ𝑀. But measurement matrix should satisfy Restricted 

Isometry Property (RIP) to provide recoverable compressed version of the original signal [9]. For each 

integer=1,2,⋯ , RIP property define the isometry constant 𝛿𝑠 of a matrix 𝜙 as the smallest number such that , 

(1−𝛿𝑠)‖𝑋‖𝑙22≤‖𝜙𝑋‖𝑙22≤(1+𝛿𝑠)⋯ (2) holds for all s-sparse vectors X[9]. A vector is said to be s-sparse if it has at 

most s non-zero entries. This propertyis satisfied by the random matrices like Gaussian, Bernoulli and also 

structured matrix like Fourier [10]. The most challenging task in CS theory is to recover the original signal from 

incomplete samples. For reconstruction process, X represents the unknown vector and the problem is to find X 

from Y given 𝜙 [3]. This problem is popularly written with 𝑙2-norm as, 𝑃2: 𝑎𝑟𝑔min𝑋‖𝑋‖22𝑠𝑢𝑐ℎ𝑡ℎ𝑎𝑡𝑌=𝜙𝑋⋯ (3) 

The minimum norm solution can be obtained from 𝑙2-norminstead of handling individual element, it measures 

total energy of the vector X. It cannot reconstruct the original signal properly from compressed version. The 

number of nonzero elements from X can be counted by replacing squared 𝑙2-normwith an 𝑙0-norm [3] as, 𝑃0: 

𝑎𝑟𝑔min𝑋‖𝑋‖0𝑠𝑢𝑐ℎ𝑡ℎ𝑎𝑡𝑌=𝜙𝑋⋯ (4) The 𝑙0-norm solution provides sparse solution but not unique, unlike 𝑙2-

norm solution. But, the 𝑙1-norm solution provides compromise between 𝑙1-norm and 𝑙2-norm solution. In terms 

of sparsity, it is closer to 𝑙0-norm where as in terms of uniqueness or being convex, it is closer to 𝑙2-norm.It can 

be written as, 𝑃1: 𝑎𝑟𝑔min𝑋‖𝑋‖11𝑠𝑢𝑐ℎ𝑡ℎ𝑎𝑡𝑌=𝜙𝑋⋯ (5) P1 is a convex optimization problem and can be easily 

solved by a linear programming (LP). P1 is also known as basis pursuit (BP) [22]. The compressed signal can be 

recovered exactly under two conditions first is original signal should be sparse and second is the measurement 

matrix should satisfy RIP property. There are mainly three types of reconstruction algorithms [23].  
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Fig. 2 Classifications of reconstruction algorithms in CS theory 

First is the greedy pursuit, such as the orthogonal matching pursuit (OMP) method [24], the stage wise OMP 

(StOMP) method [25] and the regularized OMP (ROMP) method [26], the compressive sampling matching 

pursuit (CoSaMP) method [23], where these methods build up an approximation one step at a time. Second is 

the convex relaxation algorithm, such as the interior-point method [27], the gradient projection method [28] and 

the iterative thresholding algorithm [29] and the last is the combinatorial algorithms that acquire structured 

samples of the signal that support rapid reconstruction by group testing [23]. Each algorithm has its own pros 

and cons in a particular reconstruction problem. So the reconstruction algorithm should be chosen according to 

the requirement in specific application.  

 

System model  

The system described in Fig.3 transmits the 𝑗𝑡ℎ information symbol with m-ary pulse position modulation 

(PPM).In PPM, the delay is added in the signal for modulation which is easy to implement. For transmitting the 

𝑗𝑡ℎ information symbol, consider a signal 𝑈𝑗(𝑡) containing 𝑁𝐹 frames of length𝑇𝐹,so that the signal length 

becomes 𝑇=𝑁𝐹×𝑇𝐹 and delayed by 𝑇𝑚=𝑇𝐹𝑚 for PPM modulation. The transmitted 𝑗𝑡ℎ symbol can be 

represented as𝑈𝑗(𝑡)=Σ𝑏(𝑡−𝑁𝐹−1𝑖=0(𝑖+𝑗𝑁𝐹)𝑇𝐹−𝑐𝑗𝑇𝑚), where 𝑐𝑗∈(0,1,⋯,𝑚−1) and 𝑏(𝑡) is second derivative of 

Gaussian pulse with unit energy of duration𝑇𝑏≪𝑇𝑚.If ℎ(𝑡) is represented as impulse response of Gaussian 

communication channel, then the received signal is, 

𝑟(𝑡)=𝑈𝑗(𝑡)∗ℎ(𝑡)+𝑤𝑗+𝐼𝑗(𝑡)                                           (6) 

where 𝑤𝑗(𝑡) and 𝐼𝑗(𝑡)is the additive noise and interference symbol of bandwidth is𝐼𝐵, corresponding to 𝑗𝑡ℎ 

information symbol respectively and 𝑈𝑗(𝑡)∗ℎ(𝑡)=𝑔𝑗(𝑡)is the received pulse waveform of bandwidth 𝑈𝐵 with 

duration 𝑇𝑔.  

For Nyquist-rate sampling of the symbol, we take 𝑁 samples per frame period𝑇𝐹, whereas 𝑁/𝑚 samples for 

each slot. Then the 𝑖𝑡ℎ sampled frame corresponding to𝑗𝑡ℎ symbol is given by, 

𝑟𝑗,𝑘𝑖=𝑟(𝑖𝑇𝐹+𝑘𝑇𝐹𝑁)= 𝑔𝑗,𝑘𝑖+𝑤𝑗,𝑘𝑖+𝐼𝑗,𝑘𝑖                         (7) 
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 for𝑘=0,1,⋯,𝑁−1. We assume that the NBI zero means, unit power elements whereas, 𝑤𝑗,𝑘𝑖 has independent 

identically distributed (i.i.d.) zero mean Gaussian with variance𝜎2. 

 

 

 

Fig.3 Block diagram of NBI robust UWB energy detector. 

The sampling of received signal using Nyquist-rate consumes large amount of energy due to sparse nature of the 

signal. The zero or near to zero valued samples produced after applying equation (7) are eliminated. By 

replacing Nyquist sampling with compressed sampling this wastage of energy can be removed.  

For compressing the signal, measurement matrix Φ is so chosen that it contains rows which are approximately 

orthogonal to each other [10]. Now, the received signal is applied to 𝑀×𝑁 matrix Φ to get compressed version 

of signal. For 𝑖𝑡ℎ frame, applying CS to equation (6), we get, 

𝐷𝑗𝑖=Φ𝑟𝑗𝑖=𝐺𝑗𝑖+𝑉𝑗𝑖+𝑍𝑗                                         (8) 

where, 𝐷𝑗𝑖 is the 𝑀×1 compressed measurement vector. Similarly,𝑍𝑗𝑖and𝑉𝑗𝑖 are the compressed versions of 

NBI symbol and noise respectively. Along with huge advantages, the UWB symbol has sensitivity towards NBI 

due to its wide bandwidth feature. The UWB measurements are deteriorated due to addition of NBI symbol and 

UWB symbol. In this paper, we have applied the ‗notch out‘ method [11] to suppress the NBI affected 

measurements from compressed vector. In this method, first step is to choose Fourier ensemble of magnitude 

1/√𝑁and its frequency is selected from (𝐹𝑐−Ω2,𝐹𝑐+Ω2), which are decoherent with UWB signal and coherent 

with NBI, to ensure that only few measurements are affected by NBI. Then, we can implement notch to mitigate 

NBI affected measurements. For at most 1 NBI we find, 

𝑠=argmax𝑠𝜖{0,1,…,𝑀−1}|𝐷𝑠|                       (9) 

Now, take𝐴~𝛼𝐼𝐵𝛾, where 𝛾=𝑈𝐵𝑀 is test function spacing and 𝛼 is nothing but the safety factor lies 

between 4 to 8. The NBI mitigated measurements can be obtained by notching out 𝐴+1 measurements 

around the index𝑠. If 𝑁𝐼>1NBI is expected in the signal then this notching procedure is performed for 
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𝑁𝐼 largest values from compressed measurement vector D. To reduce the time required for the frames 

individually, the NBI eliminated measurements of 𝑁𝐹 frames are averaged reconstructing and applied 

to approximated massage passing (AMP) algorithm to reconstruct the original signal [10]. The 

iterative thresholding (ITH) algorithm has better simplicity and speed than other reconstruction 

algorithms, but its performance is not good in sparsity-undersampling (SU). However, the AMP 

performs well in SU along with better speed and simplicity. The AMP can be explained briefly for 𝑛𝑡ℎ 

iteration as follows, 

𝑦𝑗[𝑛+1]=𝑆(𝑦𝑗[𝑛]+𝛷𝑇𝑥𝑗[𝑛],𝜏[𝑛])                                                             (10) 

where, 𝑥𝑗[𝑛]=𝐷𝑗−𝛷𝑦𝑗[𝑛]+1𝜇𝑥𝑗[𝑛−1]〈𝑆′(𝑦𝑗[𝑛−1]+𝛷𝑇𝑥𝑗[𝑛−1],𝜏[𝑛−1])〉         (11) 

Here, 𝜏 is iteratively updating threshold and 〈𝑆′(∙)〉 is the average of derivative all samples of soft-

thresholding over N samples. The value provided by 𝑦𝑗𝑛 is the reconstructed vector of signal. Now, 

these samples are provided to reconstruction based energy detector, which is provided in [10]. For 𝑁𝑚 

non-zero samples, detection is done as follows, 

�̂�𝑗(𝑅−𝐸𝐷)=max𝑐𝑗Σ[1𝑁𝐹Σ[�̌�𝑘]𝑖𝑁+𝑐𝑘𝑁𝑚+𝑝𝑁𝐹−1𝑖=0]2𝑁𝑚−1𝑝=0                           (12) 

The Nyquist rate energy detection is obtained by replacing reconstructed samples with Nyquist rate 

samples in (12). For analysis of energy detection, the bit error probability (BEP) of both Nyquist-rate 

energy detector and reconstruction based energy detector is given in same [10]. 

𝑃(𝑅−𝐵𝐸𝑃)=1−2Г(𝑁2)𝑁2[Г(𝑁4)]2[𝜎𝑟𝜎𝜔𝜎𝑟2+𝜎𝜔2]𝑁2×2𝐹1(1,𝑁2;𝑁4+1;𝜎𝑟2𝜎𝑟2+𝜎𝜔2)   (13) 

Where 2𝐹1(∙,∙;∙;∙)is the Gaussian hyper geometric function. 

𝑃𝑁−𝐵𝐸𝑃=1−2Г(𝑁2)𝑁2[Г(𝑁4)]2[𝜎𝛽0𝜎𝐹0𝜎𝛽02+𝜎𝐹02]𝑁2×2𝐹1(1,𝑁2;+1;𝜎𝛽02𝜎𝛽02+𝜎𝐹02)   (14) 

Where 𝜎𝛽02≜(1+𝜎2𝑁𝐹)𝑎𝑛𝑑𝜎𝐹02≜(𝜎2𝑁𝐹) 

IV. EXPERIMENTAL RESULT  

This section presents the simulation results occurred from the detector developed in previous section. We 

consider, the UWB signal is transmitted along Gaussian distributed physical channel with the elements having 

zero mean and unit variance. The received signal is compressed by applying it to the random measurement 

matrix. Let the number of interference, 𝑁𝐼=1 for experiment purpose. But, we can simulate this detector for 

multiple numbers of interferences. In AMP algorithm, the threshold policy is in the form of 𝜏[𝑛]=𝛿𝜎𝜔[𝑛] , 

which is infeasible in practice. So, threshold can be updated as suggested in [9], 

𝜏[𝑛]=𝜏+1𝜇𝜏[𝑛−1]〈𝑆′(𝑥𝑘[𝑛−1]+𝛷𝑇𝑦𝑘[𝑛−1],𝜏[𝑛−1])〉                                    (15) 

where, 𝜏 is a constant. 

We have considered four detectors for analysis purpose. The first detector is based on Nyquist rate sampling, 

the second is based on compressive sampling i.e. nothing but reconstruction based, the third detector is having 

NBI effect and in forth detector the NBI mitigation method is implemented. All the four detectors are 

compared with each other with respect to signal to noise ratio (SNR in dB) in Fig.4 - Fig.7 and with respect to 
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compression ratio (mu) in Fig.8 – Fig.11. All the detectors have same transmission parameters. The 

transmitted second derivative of Gaussian pulse has duration of 1nsec. For experimentation purpose, we take 

frame length as 100nsec and number of frames in one symbol is 30, so the duration of symbol is 

multiplication of 𝑁𝐹and 𝑇𝐹. For every frame, the number of samples is considered to be 200.All the 

detectors are analyzed with equation (12) and (13) for energy detection and bit error probability respectively. 

Due to implementation of orthogonal random matrix at compression, the plot of ABEP is following the plot of 

ED in all the simulated results. 

 

Fig.4 Comparison of Nyquist Rate and reconstruction based energy detectors w.r.t. Eb/No. 

 

Fig.5 Effect of NBI on reconstruction based energy detector w.r.t. Eb/No 
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Fig. 6 Comparison of detectors in the presence of NBI and after mitigating NBI w.r.t. Eb/No 

In Fig.4 and Fig.8 we can observe that, there is large difference between energy detection of Nyquist rate 

based and compressive sampling based energy detectors. The CS based energy detectors gives better energy 

detection than the traditional sampling based energy detectors. After adding the NBI symbol with UWB 

symbol, the effect can be observed in Fig.5 and Fig.9. Then the notch out method is implemented to eliminate 

the NBI affected measurements from compressed measurements. After eliminating the NBI effect, it is 

compared with the detector having NBI effect in Fig.6 and Fig.10. The Fig.7 and Fig.11 shows the 

effectiveness of the notch out method to remove the NBI from the compressed version of the signal. The 

energy detection of the detector in the absence of NBI and after mitigating NBI is similar. It is the evident that 

the notch out method will remove the NBI successfully. 

 

Fig. 7 Comparison of detectors in the abcence of NBI and after notching out NBI w.r.t. Eb/No. 



 

 
 

362 | P a g e  
 

 

Fig.8 Comparison of Nyquist rate energy detector and compressed sampling based energy 

detector w.r.t. mu 

 

Fig.9 Comparison of energy detector in the absence of and in the presence of NBI 

 

Fig.10 Comparison of energy detector in the presence of NBI and after mitigating NBI. 
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Fig.11 Comparison of energy detector in the absence of NBI and after mitigating NBI w.r.t m 

V. CONCLUSION 

In this paper, we have developed compressed sensing-based UWB energy detector for narrowband interference 

it is robust. Due to reduction in sampling rate than the traditional sampling rate this detector consumes less 

power. The wideband communication is sensitive to NBI; so that we have implemented the method which 

mitigates the NBI-affected measurements from compressed version of the received signal without harming 

much of the other measurements. From the simulated results, thus we have observed that CS-based energy 

detection is better than the Nyquist rate energy detection 
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