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ABSTRACT 

The modulation instability of ion-acoustic waves has been theoretically investigated in an unmagnetized 

collisionless plasma with (hot and cold) electrons, positrons and ions. A nonlinear Schrödinger equation 

(NLSE) has been derived by using the KBM method. The positron concentration, temperature ratio of the ion to 

electron, cold electron concentration, temperature ratio of cold to hot electrons   and positron temperature are 

shown to play significant role in the modulation instability of ion-acoustic waves.   
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I. INTRODUCTION 

During the last few years electron-positron-ion (EPI) plasmas attracted attention due to their importance both in 

laboratory experiments and in space plasma observations [1-3]. Electron-positron plasmas are found in 

astrophysical plasmas such as magnetosphere of pulsars, in active galactic nuclei, in early universe, and in the 

regions of the accretion disks surrounding the central black holes [4-6]. Therefore, the study of electron-

positron-ion (EPI) plasmas is important to understand the behavior of both astrophysical [1-3,7-9] and 

laboratory plasmas [10-12].  In the last two decades there has been a great deal of interest in the study of 

nonlinear wave phenomena in both unmagnetized and magnetized EPI plasmas [13-21].  

Several authors have derived the nonlinear Schrödinger equation by either using the reductive perturbation 

method [22-23] or the Krylov Bogoliubov Mitropolsky (KBM) method [24] have studied the stability of ion-

acoustic waves against modulational instability in a collisional less plasma consisting of cold ions and hot 

electrons. It has been shown [24]  that the ion-acoustic waves are modulationally unstable for wave numbers 

greater than a normalized critical wave number kc ( = 1.47).  The modutional instability of ion acoustic wave 

with warm ions have been studied using reductive perturbation method [27] and KBM  method [25]  in 

unmagnified electron ion plasmas. The modutional instability of ion acoustic wave with negative ions in 
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plasmas have been investigated by Mishra et al. [26] The modutional instability of ion acoustic waves in 

plasmas with superthermal electrons  have been studied by Gharaee  et al. [28]    

The modulation instability of electrostatic modes in both EPI as well as in pair plasmas has been a subject of 

great interest in the recent years [29-30]. The nonlinear amplitude modulation of low-frequency electrostatic ion 

waves propagating in collisionless magnetized EPI plasma are studied [31].  Zhang et al. [32] have investigated 

modulation instability of ion-acoustic waves in electron-positron-ion plasma with nonthermally distributed 

electrons and cold ions. Eslami et al. [33] have studied modulation instability of ion-acoustic waves in electron-

positron-ion plasma with electrons and positrons following q-nonextensive distribution. The nonlinear 

amplitude modulation of ion-acoustic wave in the presence of warm ions in unmagnetized EPI plasmas [34]. 

However, in the course of their study, they have taken the same temperature for the electron and positron 

species. Therefore, their analysis cannot be used to study the modulational instability of ion-acoustic waves in 

EPI plasmas in which electron and positron species are at different temperatures. A nonlinear Schrödinger 

equation which describes the modulational instability of ion-acoustic soliton  is derived by using the multiple 

scale method, the dispersive and nonlinear coefficients are obtained which is depend upon the temperature of the 

ions, concentration of the positrons, electrons and dust particles [35]. Chawla et al. [20]  studied the 

modulational instability of ion-acoustic waves in EPI. Modulational instability of ion-acoustic waves has been 

theoretically investigated [36] in an unmagnitized collisionless plasma with nonthermal electrons, Boltzmann 

positrons, and warm positive ions. 

The  modulational instability of ion-acoustic waves in a two-electron temperature plasma has been studied by 

Sharma and Buti [37] for parallel modulation. They found that due to the presence of cold electron component, 

the critical wave number for modulational instability reduces, which increases the unstable region in k-space. It 

has also been shown by them that the unstable region ( in k-space ) significantly depends upon the relative 

densities and temperatures of two electron components. The  modulational instability of obliquely modulated 

ion-acoustic waves in two-electron-temperature collisionless plasma has been investigated by Yashvir et al. 

[38]. Their study reveals that there exists a wide domain in the  k  plane in which the large amplitude ion-

acoustic waves would be modulationally unstable. Chhabra and Sharma [39] studied the nonlinear oblique 

modulation of ion-acoustic waves in a two warm ion plasma. Mishra et al. [40] studied the modulational 

instability of obliquely modulated ion-acoustic waves in a collisional plasma with one and two electron 

temperature distributions. The modulational instability of obliquely modulated ion-acoustic waves in a 

collisionaless plasma consisting of two-ion species with different masses, concentrations, and charge states have 

been studied by Mishra et al. [41]. In that analysis, the ion species were taken as cold. Nonlinear modulation of 

ion-acoustic waves in two-electron-temperature plasmas studied by Esfandyari-kalejahi et al. [42]. 
 
Existence 

and characteristics of ion-acoustic wave modulation are studies [43] in a plasma with two-temperature electron 

satisfying kappa distribution. 

The paper has been organized as follows: In Section II, the normalized fluid equations for the system have been 

presented. The nonlinear Schrödinger equation has been derived in Sec. III and in Sec. IV, stability analysis has 

been discussed. The conclusions are summarized in Sec. V. 
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II. BASIC EQUATIONS  

We consider a plasma consisting of warm adiabatic ions and isothermal electrons, which are divided into two 

groups: a hot component with density nh and temperature Th and a cold component with density nc and 

temperature Tc.. The nonlinear behavior of ion-acoustic waves may be described by the following set of 

normalized fluid equations: 
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In the above equations, n  and v  are the density and fluid velocity of the ion species, E is the electric field, hn  

is the hot electron density, cn  is the cold electron density and pn  is the positron density. ei TT /3 , defines 

the temperature ratio of adiabatic warm ions to electrons of the plasma and ep TT / ,  the ratio temperature 

of positron with electron fluid . We have normalized the quantities n , ,v hn , ,cn pn , x, E and t with 
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III. DERIVATION OF THE NONLINEAR SCHRO ̈ DINGER EQUATION 

Using the KBM perturbation method for nonlinear wave modulational, we expand all the quantities around the 

equilibrium state as follows:
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In order to consider the modulational instability of ion-acoustic waves in the system, we assume that the 

perturbed quantities of all orders depend on x and t through the complex amplitudes ( a , a ) and phase factor 

( ). The phase factor is given by 

tkx  
                                                                                                                                                (8)  

The complex amplitude a is a slowly varying function of x and t expressed as       
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together with the  complex conjugate relations to Eq. (9). The unknown functions A1, A2,… and B1, B2,… are 

determined so as to eliminate all secular terms in the perturbation solution.                   

 On substituting the expression (7) into the set of equations (1) - (6), using (9) and equating terms with the same 

power of ,  we obtain a set of equations for each order in .  From the first - order equations, the first order 

solutions are given as  
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The condition for these solutions to be non - trivial is obtained in the form of linear dispersion relation 
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In order to get the nonsecular solution up to  third order in ,  we set the constant and the coefficient of the 

resonant secular terms equal to zero, which gives the nonlinear Schrodinger equation:  
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Here 2 , ,3 4  
and 5 are function of a  and a  only and are assumed to real. Where ,1c ,3c ,4c and 5c are 

arbitrary constants independents of a , a and   can be determined by the initial conditions. The dispersion 

coefficients P and the nonlinear coefficient Q are given, respectively, by equations (15) and (16).  
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IV. STABILITY ANALYSIS AND DISCUSSION 

It is well known that the modulation instability depends on the sign of the product of the dispersive and 

nonlinear coefficient, i.e., PQ.  It is found that the presence of positron modifies the unstable region of the ion-

acoustic waves which is defined by 0PQ
 
are and the stable region of the ion-acoustic waves which is 

defined by 0PQ .  We have investigated that ion-acoustic waves are modulationally unstable in the range of 

wave numbers lying between ,maxmin kkk   where the values of mink
 
and maxk

 
depends upon the cold 

electron concentration, temperature ratio of cold to hot electrons, ion temperature, positron concentration, and 

positron temperature of the plasma. For the case of cold ions and in the absence of positron, and cold electron 

concentration, we find the critical wave number kc = 1.47.                           

Fig. 1, is a PQ versus wave number k plot for different values of temperature ratio of cold to hot electrons )(  

keeping the values of ion temperature ),/( ei TT positron concentration )( , cold electron concentration ),(  

and positron temperature )(  constant. It shows that as the temperature ratio of cold to hot electrons )(  

increases, the value of  kmax decreases.      

 

           

Fig. 1 Variation of the product PQ with wave number k with ,0  ,1.0/ ei TT ,0   and 0  at 

different values of cold to hot electron temperature 6.0)(  (dotted line), 0.8 (dashed line) and 1 (solid line).  

  In Fig. 2, we have plotted the variation of PQ with respect to wave number k for different values of positron 

concentration ),( at ion temperature ),/( ei TT  cold electron concentration ),(  temperature ratio of cold to 

hot electrons ),(  and positron temperature ).( We also note from the figure that as the positron 

concentration ( ) increases, the values of maxk  and mink   increases. 
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Fig. 2 Variation of the product PQ with wave number k with ,1.0  ,1.0/ ei TT ,8.0  and 8.0  

at different values of positron concentration 01.0)(    (solid line), 0.05 (dashed line) and 0.1 (dotted line). 

 

In Fig. 3, PQ is plotted as function of k for different values of temperature ratio of cold to hot electrons 

),( taking other plasma parameters such as cold electron concentration ),(   positron concentration ),(  

ion temperature ),/( ei TT  and positron temperature )( as constant.  It is seen that as the temperature ratio of 

cold to hot electrons )(  increases, the value of  kmin increases.            

 

 

Fig. 3 Variation of the product PQ with wave number k with ,1.0/ ei TT 8.0 , ,1.0  and 01.0  

at different values of cold to hot electron temperature 6.0)(   (dotted line), 0.8 (dashed line) and 1 (solid 

line).  

                                                                                                                                                                                                           

V. CONCLUSIONS 

To conclude, we have studied the modulational instability of ion acoustic waves in unmagnetized electron-

positron-ion plasmas with two electron temperature distributions by employing KBM perturbation method. It is 

found that as the ion temperature increases, the value of kmax and kmin decreases, at the same time the region of 

instability also decreases. The presence of positron concentration, positron temperature ratio, temperature ratio 
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of cold to hot electrons and cold electron concentration, the value of   kmax and kmin increases. For a given set of 

parameters values with temperature ratio of cold to hot electrons, cold electron concentration, ion temperature 

and positron concentration, by increasing the value of positron temperature ratio, the value of  kmax and kmin 

increases. For a given set of parameters values with temperature ratio of cold to hot electrons, cold electron 

concentration, ion temperature and positron temperature ratio, by increasing the value of positron concentration, 

the value of  kmax and kmin also increases.  

In the absence of positron, temperature ratio of cold to hot electrons and increasing the value of the cold electron 

concentration, the value of  kmin increases at warm ion case. In the presence of positron, temperature ratio of 

cold to hot electrons and increasing the value of the cold electron concentration, the value of  kmax  increases and 

kmin decreases in warm ion case. 

In the absence of positron, cold electron concentration and increasing the value of the temperature ratio of cold 

to hot electrons, the value of  kmax decreases at warm ion case. In the presence of positron, cold electron 

concentration and increasing the value of the temperature ratio of cold to hot electrons, the value of  kmin 

increases at warm ion case. 

Our findings are general and may be applicable to explain the stable and unstable modulational of ion acoustic 

wave in astrophysical plasma situations such as neutron stars or pulsars where unmagnetized electron-positron-

ion plasma with warm ions may exist. 
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