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ABSTRACT 

For last three decades applications of beta operators in the area of approximation theory is an active area of 

research. In the present paper, we obtain asymptotic formula for modified beta operators in linear simultaneous 

approximation. To establish our result, we have used the technique of linear approximating method, namely, 

Steklov mean.  
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I. INTRODUCTION   

In approximation theory, beta operators have been studied for last three decades. Beta operators were introduced 

and studied by several researchers [1, 3 , 7, 8]. In the present paper we study an asymptotic formula in 

simultaneous approximation for the linear combinations of the operators introduced by Gupta et al. [2]. The 

modified beta operators introduced by Gupta et al. [2] are defined as  
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and )!/(!)!1()1,( vnnvnv   the Beta function. 

It is easily checked that the operators defined by (1.1) are linear positive operators and it is obvious that 

1),1( xBn . Also it is observed that the order of approximation by operators (1.1) is, at best O(n
-1

), 

howsoever smooth the function may be. Thus, to improve the order of approximation we may consider some 

combinations of the operators (1.1). One approach to improve the order of approximation is the iterative 

combinations due to Micchelli [5], who improved the order of approximation of Bernstein polynomials. 

However, we cannot apply this approach to the operators (1.1) because for these operators (1.1), we not 
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have 0),(  xxtBn , which is essential property for making iterative combinations. Yet another approach for 

improving the order of approximation is the technique of linear combinations which was first considered by 

May [4] to improve the order of approximation for exponential type operators. In the present paper, we use the 

later approach, which described as: 

Let d0, d1, d2… dk be (k+1) arbitrary but fixed distinct positive integers. Then the linear 

combination ),,( xkfBn of ),( xfB nd j
 , j = 0, 1, 2…n is defined as 
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     (1.2) 

where                            
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The above expression (1.2) after simplification may be written as 
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Some basic properties of  )(, xb vn  are as follows 
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     (1.8) 

where Nn  and ),0[ x . 

Throughout this paper, we may assume that  1322310 bbbaaa  and 

],[ iii baI  where i =1, 2, 3. 

Let ),0[ H be the class of all measurable functions defined on ),0[  satisfying  
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    for some positive integer n. 

Obviously the class ),0[ H is bigger than the class of all lebesgue integrable functions on ),0[  . Therefore 

the operators (1.1) may be applicable for studying a larger class. 

 The main object of the present paper is to study a Voronovskaja-type asymptotic formula in simultaneous 

approximation for linear combinations of the operators (1.1). 

 

II. AUXILIARY RESULTS 

To prove our main results, we shall require the following preliminary results: 

Lemma 2.1. For 
0Nm (the set of non-negative integers) and mn  , let the function )(, xmn be defined as 
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   , and there holds the recurrence relation 
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Moreover, we have the following consequences about )(, xmn : 

(i). )(, xmn  is a polynomial in x of degree m, 

(ii). for every  ]2/)1[(

, )(,),0[  m

mn nOxx   

where [ ] denotes the integral part of  . 

Consequently, on using Holder’s inequality, we have from this recurrence relation that 

     2/rr
,  nOxxtBn  for each r >0 and for every fixed ),0[ x  .                

Proof. Since  xxtBx m

nmn ,)()(,  , therefore, using linearity property, we have 
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To prove the recurrence relation we shall make the use of the following identity  
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Thus, we get the required recurrence relation 
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The other consequences follow easily from the above recurrence relation. 

 

Lemma 2.2. For Nm and sufficiently large Nn , there holds the following recurrence relation  

    )1(),,(,,)( )1( oxkmQnxkxtB km

n  
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where ),,( xkmQ  is a certain polynomial in x of degree m and ),0[ x is arbitrary but fixed. 

 

Proof. Using Lemma 2.1, for sufficiently large n, we can write  
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where )(xqi , 0i , 1, 2, 3, … are certain polynomials in x of degree at most m. 

  

Now, we have 
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     =  )1(),,()1( oxkmQn k 
  , for each fixed ),0[ x . 

This completes the proof of the Lemma 2.2. 

 

Lemma 2.3.  For 
0Nm , if the m

th
 order moment for the operators (1.1) be defined as 
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Consequently, for each ),0[ x , we have from this relation that 
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where [ ] denotes the integral part of  .   

Proof. Using the definition of  )x(U m,n  and basic properties of )x(b v,n , we obtain  
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This completes the proof of the recurrence relation. 

The other consequence follows easily from the recurrence relation. 

  

Lemma 2.4([6]). There exist the polynomials )x(Q r,j,i  independent of   n and v such that 
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where rD  is the r
th

 order differentiation operator.   

 

Lemma 2.5. If C( j, k ) ,  j = 0, 1, 2, …, k are defined as in (1.3), then we have  
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III. MAIN RESULT 

Now we begin to prove the main results of this section, namely, Voronovskaja-type asymptotic formula.  
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Theorem: Let Nr . If the function ),0[ Hf is bounded on every finite subinterval of ),0[   admitting 

a derivative of order (2k+r+2) at a fixed point ),0( x , satisfying )()( tOtf  as t  for 

some 0 , then we have 

            ),,,()(])(),,([
lim 2r2

1r

)()r()r(1 xrkiQxfxfxkfBn
n

k

i

i

n

k






 


                                           

(3.1)  

and   0])(),1,([
lim

)r()r(1 


 xfxkfBn
n

n

k
,                                                      

(3.2) 

where ),,,( xrkiQ  are certain polynomials in x.   

Moreover, if 
)2r2( kf exists and is continuous on ),0(),(  ba where 0 , then (3.1) and 

(3.2) hold uniformly on ],[ ba . 

Proof. Since 
)2r2( kf exists at ),0( x , therefore by Taylor’s expansion of  f (t) , we have 
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Using linearity of ),,()r( xkBn  , relation (1.3) and the above expansion of  f (t), we get 
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Using Lemma 2.2, we obtain 
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In order to prove assertion (3.1), it is enough to show that 02 J as n . 
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Let   
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Since 0),( xt as xt   , therefore , for a given 0 there exists a 0 such that  

 ),( xt  whenever  xt0 . 

Also, since   )(),( xtOxt  , therefore there exists a positive constant C1 such that 
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Now applying Schwarz inequality for integration and Lemma 2.1, we have 
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where  q is a positive constant and the constant 2C is dependent on  ,,, rkq  and   . 

Next using Lemma 2.3, we get 
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where  q is chosen to be greater than 2k + r + 2. 

 Thus, due to arbitrariness of 0 and by Lemma 2.5 it follows that 02 J as n . 

 Finally collecting the estimates of J1 and J2, assertion (3.1) follows. 

 The assertion (3.2) can be proved easily in a similar manner noticing the fact that  

      )2(,1,)(  ki

n nOxkxtB    for ...,2,1i  

The last uniformity assertion follows from the fact that )( in the proof of the assertion (3.1) can chosen to be 

independent of ],[ bax  and rest of the estimates hold uniformly on ],[ ba . 

This completes the proof of the theorem. 
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