

74 | P a g e

AUTHORIZATION FOR INTERNET OF THINGS

D. Ramakrishna
1
, D.Vasumathy Ramakrishna

2

1
Computer Science Department, Bhavan’s Vivekananda College of Science,

Humanities and Commerece, Sainikpuri, Secunderabad
2
Humanities and Science Department, St. Peter’s Engineering College

Maisammaguda, Opp.Forest Academy, Dhulapally, Near Kompally, Medchal (M), R.R.Dist., Hyderabad

ABSTRACT: This paper describes about the Authorization of Internet of Things. The architecture of Authorization of Internet of

Things looks like this, the Device Owner is connected to Authorization Server and then it is connected to User by Internet. In this

technique we require a framework for authorization for Internet of Things. The authorization is required at Authorization Server

to secure the data, because the Authorization Server is a device which receives the information from Device Owner and then that

is passed to the User. As there are lot threats to Internet, so we need to protect our data from the damage. To protect this data we

can use encryption techniques like pre-shared keys or public key to authenticate the data at Authorization Server. In modern days

all the devices are connected to Internet and application runs on those devices, so end User requires some information from the

Device Owner, the Device Owner must communicate through Authorization Server, so it requires to their protect, in this case the

Authorization Server requires a framework for Internet of things.

Keywords: Device Owner, Authorization Server, Encryption, Pre-Shared Key and Public Key

I. INTRODUCTION

In this paper there are 2 terms used, first one is

Authorization. Authorization means the access rights given

resources related to security like computer security or

information security in common and to access them in giving

particular techniques. The second term Internet of Things, it is

specified like the connection of inter-networking of physical

devices, vehicles, building and other items, which are

embedded with electronic devices likes actuators, sensors,

software and network connectivity, which enables these objects

to get the data and exchange information. Finally the paper

title is Authorization for Internet of Things

The Authorization for Internet of Things is like providing

security to Device Owner and end User, at Authorization
Server. This is possible by using encryption techniques.

As we know that the whole world is connected to the

Internet, so a lot of data transfer is done by Internet. The
devices are used in globally accessible, handle very sensitive
data or Novel business models need new access modes for
accessing the data from Device Owners.

In this paper, we focus on the important concepts like

security challenges, authorization and access control, in the

context of Authorization Server providing the security to the

Devices Owner and the end User.

II. RELATED WORK

Protecting the data is important in now days as there is a lot
of the end user (U) who access the data using mobile, laptops
or small portable devices. That's the reason we require to
protect the data in this case, as the Internet is open world, we
require a lot of security techniques to protect the data.

Access control lets only authorized users to access a

resource, such as a file, Internet of Things device, sensor or
URL. All modern operating systems limit access to the file

system based on the user. For instance, the super user has wider
access to files and system resources than regular users.

In this case the Internet of Things context, access control is

needed to make sure that only trusted parties can update device
software, access sensor data or command the actuators like to
perform a given operation. The business models like as Sensors
As a Service (SAS), which helps to solve the access control the
data ownership issues, where they might for instance like sell a
sensor like whether temperature sensor data to the clients.

Figure 1: Connection of Internet of Things

Figure 1 explain about the connection of Internet of Things

are connected to the Health Monitoring, Smart Homes,

Industrial Control Systems and etc,. Where the authorization is

required.

III. REQUIREMENTS

Differentiated access control rules for different requesting

users: Local enforcement of certain conditions (e.g. on device-

state, position, time). Minimal communication requirements

and low computational overhead. Protect access control

information itself Dependent on a minimum of other functions.

End-to-End protection of protocol messages.[1]

75 | P a g e

IV. ARCHITECTURE

 Figure 2: Authorization Framework Architecture

In figure 2, the Device Owner first register devices and

configure polices (policies are based on local conditions e.g.

state of the device, time, position), at the Authorization Server

(A.S.) and Resource Directory, which also known as Back-

End. The Authorization Server discovers device by User and

User request authorization from Authorization Server. The

User then accesses (The access control solution shall be

dependent on a minimum of other functions.) the device

services.[1]

V.

Figure 3: Authorization Access Procedure

Figure 3 explains authorization access procedure. In this

first User request for access permission to Authorization

Server (Back-End System). The Authorization Server does the

following tasks, as it gets the request. It evaluates access

requests and checks whether to Permit or Deny the request by

the User (U). If Authorization Server (AS) Permit, then it

issues an authorization assertion to the User (U). The User (U)

gets a response with assertion if it is Permitted response.[1]

V. FRAMEWORK FOR AUTHORIZATION

The requirement to fulfill the fine-grained access control,

we have to select the access control standard like XACML

(eXtensible Access Control Markup Language) [2], since it is

more predominant standard in the area and has been used in

industry to some extent.

The process of evaluating XACML (eXtensible Access

Control Markup Language) policies is too heavy weight for

constrained devices in the framework, therefore we can

propose to externalize the most of the authorization decision

process (All introduced security mechanisms shall be designed

such that the total overhead due to computation and especially

communication is as low as possible on the device side) and

have the device perform primarily authorization enforcement

(The solution shall provide end-to-end protection (integrity

and confidentiality) of relevant parts of the protocol messages,

as well as replay protection).

The process to deal with local conditions affecting the

access control decision (The framework shall support policies

based on local condition example, like state of device, time,

position), other information about local conditions must be

transported to an external policy decision point or some access

control decision be made within the constrained device. It may

later be preferred for several reasons like: transporting

information about local conditions for each policy decision

introduces delays and adds a transmission cost to the device

and moreover, the local conditions may have changed at the

time of enforcement. Furthermore, we can express the local

conditions as XACML (eXtensible Access Control Markup

Language) Obligations i.e. the conditions which makes a

decision as valid can be an external authorization decision in

the framework.

In the sequence to convey the authorization decisions from

the external decision point to the device, we can opt to use

assertions, which are digitally signed data objects containing

asserted information and in particular way we use SAML

authorization decision assertions[3] as a template. An

alternative would have been to use OAuth access tokens[4] as

starting point, and at the end result would have been similar,

but we choose SAML since it is well integrated with XACML

(eXtensible Access Control Markup Language).

We have three main elements in our framework, they are

like a Device (D) hosting resources, the next element is User

(U) wishing to access a resource and the last element is

Authorization Server (AS) located in the back-end, which

performs policy evaluation and issues authorization assertions

for resource access to the User. The User sends these

assertions to the device along with the request. The

Authorization Server (AS) is acting on behalf of a device

owner who has configured the resource access policies.

Independent of the authorization mechanism, we also need

a fourth entity that facilitates resource discovery, a Resource

Directory (RD) maintains descriptions of resources. Our

design extends the use of the directory to also manage secure

data, relevant to devices (example device public key, the

capability to process local conditions). It must be noticed that

privacy reasons, that the resource descriptions may also be

subject to access control (The authorization framework shall

support secure access to access control related information),

and should not be transmitted over an unprotected channel.

It is straightforward to apply our access controlframework

to this data. The resulting architecture is explained in figure 2.

In this architecture, the authorization framework requires

the following minimal set of the following functions according

the given consideration: The access control solution shall be

dependent on a minimum of other functions. They are as

follows:

i. The Authorization Server (AS) must to be able to bind the

76 | P a g e

 User to the assertion. If the authorization decision depends

 on the User’s identity the Authorization Server (AS) also

 requires to authenticate the User. In cases where the User’s

 identity is not relevant (example like purchasing service) as

 alias can be used instead. The bonding can be achieved by

 including the public key (security key) or the alias of the

User in the assertion. The alias can be authenticated using the

scheme.

ii.The Device (D) must be able to verify that an assertion is

valid and from a trusted source. To achieve this the

Authorization Server (AS) needs to sign the message using a

key that is known to and trusted by the Device (D).

iii.The Device (D) must be able to bond with the User (U) to

 the assertion. This can be achieved by implicit or explicit

authentication of the User (U) (or the alias used)

To compile with security mechanisms shall be designed

such that the total overhead due to computation and especially

communication are as low as possible on the device side. All

introduced security mechanisms shall be designed such that

the total overhead due to computation and especially

communication is as low as possible on the device side, the

protocols are used to implement these functions which should

be used as minimum of message exchanges with the Device

(D), this ideally not more than if the Device (D) accessed

without authorization mechanisms.

The transport protocol can be build upon the IETF

Constrained Application Protocol draft (CoAP)[5], adding

security information to the CoAP message where needed.

CoAP is specifically designed for constrained devices and

features a very low overhead compared to e.g. HTTP

(Hypertext Transfer Protocol), nevertheless our framework is

not specific to CoAP and would also work with other

application layer protocols.

The given framework describes above that we can

implement functions complying with all our requirements and

additional information even to fulfill those of Naedele.[6]

VI. KEY CONCERN IN FRAMEWORK

The requirement for solution shall provide end-to-end

protection (integrity and confidentiality) of relevant parts of

the protocol messages, as well as replay protection. This

assumes a key establishment procedure, and unless keys are

provisioned, this has in turn been predated by an

authentication or security procedure. In the above

authorization of framework, we neither require a key

agreement procedure nor a particular authentication protocol,

but we have to nevertheless accountable for keys that are

established as that impacts, what capacity left in the Device

(D) for security related tasks. We must be limited to ourselves

on to two main candidates here.

The best option suitable for CoAP as straightforward is

DTLS [7] based on raw keys (Public or Pre-Shared), in which

case the DTLS record protocol provides cryptography,

integrity and replay protection of CoAP messages. For

extremely controlled devices, however, the DTLS handshake

may impose a considerable setup time.

The modeled framework of an object authentication based

approach. In this approach we can use symmetric keys for an

object protection, but works with both symmetric and

asymmetric established keys: Assume first that the Device (D)

and Authorization Server (AS) have established each other’s

public keys. By including a verified public key of the user

(i.e. it is obtained by the Authorization Server (AS) in the

assertion request) in the assertion and once in the payload the

User (U) and Device (D) can perform the analog calculations

and derive a Symmetric Key.

Now lest assume Instead that Device (D) and Authorization

Server (AS) have established shared symmetric keys. A unique

User (U) alias instead of public key in the assertion, The

Device (D) and the Authorization Server (AS) can use a

suitable one-way key derivation function to derive a

symmetric key.

VII. PROCEDURES IN AUTHORIZATION

FRAMEWORK

We require a set of procedures and protocols to perform the

following:

A. Device owners registering new devices and their

relevant authentication data.

B. Users (U) finding a device and requesting an

authorization assertion for it.

C. User (U) accessing a device using a previously

obtained authorization assertion.

To comply with our requirements, the security mechanisms

shall be designed such that the total overhead due to

computation and especially communication is as low as

possible on the device side. We design our protocols such that

they do not require additional message exchanges compared to

unprotected CoAP exchanges.

A. Registering a New Devices (D)

As we assume the existence of a resource directory such as

the IETF Resource Directory[8], which supports procedures

for the device to initiate registration of resource description to

the directory. We assume that security relevant data for a

device such as its public key, the Authorization Server it

trusts, its owner, and the Obligations which it can process,

may be registered as device meta-data in the directory, and can

be queried by relevant entities. Publishing this meta-data can

follow the same procedure as for the publication of the

device’s resources.

B. Getting an Authorization Assertion

The best way to access a resource on a Device (D), the

User (U) needs not only to find the Uniform Resource

Identification of the resource, but we also to acquire an

authorization assertion and a cryptographic key to use in

security protocols with the Device (D). The Uniform Resource

Identification and Device connected to the authentication

parameters can be retrieved from the Resource Directory.

77 | P a g e

Among these is the address of the Authorization Server (AS)

to be trusted by the Device (D). The User (U) requests an

assertion to access a particular resource from this

Authorization Server (AS), which internally runs the XACML

((eXtensible Access Control Markup Language).) request-

response protocol to find out if the User (U) is granted access.

The Authorization Server (AS) returns an assertion and a

Device Key to the User (U). Depending on whether

asymmetric or symmetric keys are used, the assertion contains

either a public key or a unique alias of the User (U).

C. Accessing a Device (D)

The resource on the Device (D) and the User (U) now

sends a CoAP request including the assertion to the Device

(D), secured with a protocol/crypto suite supported by the

Device (D). CoAP supports the use of optional request

information to be carried as a CoAP Option interspersed

between header and payload. We propose to introduce an

Assertion Option in CoAP. Furthermore, in our object security

approach we replaced the CoAP payloads with object secured

equivalents based on the Device Key obtained from the

Authorization Server.

The Device (D) verifies the assertion, matches the access

rights authorized in the assertion with the actual access

request, and verify the local conditions (if any) specified in the

assertion.

If all verifications are successful the request is granted with

consequential processing and response. Replay protection is

provided by giving the assertions a short, pre-defined validity

time, and storing on the device a list of recently used assertion

identifiers.

The DTLS offers bundled decoded and integrity protection

of both headers and payload, the main goal or object of

authorization approach allows for a trade-off between

protection against performance. The assertion, payload and

trust model depending may need to be decoded because of

overhearing will reveal information about the User,s (U)

request, which may be privacy sensitive. Wrapping the

payloads as secure objects allow differentiated protection of

the content based on its sensitiveness.

For example, in a CoAP GET request, the assertion could

be integrity protected only, while the response payload would

be encrypted and integrity protected. The assertion and request

payload in a CoAP PUT / POST, would be integrity proctected

and the response would be unprotected.

VIII. AUTHORIZATION SERVER

The Authorization Server (AS) consists of two

components, they are i) an assertion issuing system and ii)

an access control system. The assertion issuing system

encodes the authorization decision as an assertion. The access

control system produces policy-based access control decisions

using XACML(eXtensible Access Control Markup Language).

How the policies are created and administrated is out of scope

for this paper. When a User is granted access by the access

control system.

It is possible that the access granted by such an assertion

depends on parameters known only to the Device (D), in

which case the Device (D) will evaluate those and grant or

deny access based on the outcome of this evaluation. This

means that at least some devices will perform more than pure

enforcement of access control decisions.

The authorization decision which enables the Device (D) to

enforce, the assertion needs to provide the following

information, they are follows:

 Which resource does the decision applies for.

 Which action (GET, PUT, POST, DELETE) does the

decision apply for.

 Which subject does the decision apply for, and how can

this subject be authenticated (if necessary).

 Which assertion server has issued this assertion (this

information might be implicit from the signature of the

assertion).

 Under which other conditions is the assertion valid

(expiration date, replay protection, parameters evaluated by

the device at access time).

Since the full syntax of XACML (eXtensible Access

Control Markup Language) Responses and SAML Assertions

includes a large number of features, we have defined a subset

of both standards, in order to simplify the processing on the

Device (D). Furthermore the XML representation of this

subset is too verbose for efficient transmission over limited

channels, therefore we have defined a compact JSON-based

notation for our SAML and XACML (eXtensible Access

Control Markup Language) subset. This approach reduces the

size of the assertion roughly by a factor of ten.

IX. IMPLEMENTATION

Let the framework have Device (D) as part of it which is

implemented using the object authentication based approach

and symmetric keys for an example, let us take platform for it

which has the following details: The Arduino Mega 2560

board3. This board features a 16 MHz processor, 256 kB of

Flash Memory, 8 kB of SRAM, and 4 kB of EEPROM. We

chose this board in order to test our approach on the low end

of the performance spectrum for target constrained devices.

The board was programmed in C using a custom

implementation of the CoAP protocol stack, the Cryptosuite

library for HMAC-SHA256 and an optimization of the 8-bit

AES implementation by Brian Gladman Processing the CoAP

messages on the device, including our authorization handling,

requires roughly 7.3 kB of static memory (including Arduino

internals such as UDP, Ethernet, SPI libraries, etc), which

places us close to the upper limit of what this board can do.

From the required operations the most time consuming

ones unsurprisingly turned out to be encrypting, decrypting,

integrity protection, and integrity verification. Other

operations such as matching the assertion to the requested

action turned out to consume only negligible time.

78 | P a g e

We chose to use the IETF JSON Web Encryption (JWE)

[9], an emerging secure object standard, for wrapping the

assertion and payload. Note that this wrapping expands the

payload size drastically. For example a typical sensor reading

could be a 4-byte integer. If that would be protected by AES

encryption and a HMAC message authentication code, we

would have 128 bytes of encrypted text due to the block-size

padding and another 160 bytes for the MAC.

X. SECURITY EVALUATION

In the present framework, we aim to protect the following

assets: The data on devices, the devices themselves, and the

services offered by devices.

Our measures to protect these assets are to enforce fine

grained restrictions on accessing the devices (as opposed an

all-or-nothing approach,that would just require authentication).

Due to the setup of our framework, we also need to protect

authorization decisions, the authorization policies, and relevant

attributes to make these decisions.

Note that only the protection of authorization decisions

needs to be verified on the Device (D), everything else is

performed on more powerful back-end machines.

The Authorization Server (AS) is a Trusted Third Party

from the point of view of the Device Owner, which if

compromised could e.g. issue assertions to unauthorized

parties or use a derived key to decrypt an eavesdropped GET

response.

The end-to-end security setting has two sides. Since all

data is verified and protected in the Device (D) there are no

intermediary attack targets for breaking confidentiality or

integrity. But also since the Device (D) is in principle open for

access from arbitrary users, additional overload protection

mechanisms may be needed, e.g. external firewall

functionality restricting the number of simultaneous requests

and/or verifying assertions before forwarding . An alternative

approach is to use a gateway that has full, direct access to the

devices it manages, and filters access requests based on its

access control policies. Such an approach has the advantage

that all authorization handling is moved to an entity without

the resource constraints present on the devices. However one

disadvantage is that we cannot maintain end-to-end protection

of the protocol messages, since the gateway needs to be able to

read them. Thus privacy critical requests cannot be protected

should the User (U) distrust the gateway. Furthermore this

approach is not applicable to a scenario featuring devices only

locally accessible in isolated places.

XI. CONCLUSION AND FUTURE WORK

We have presented a generic authorization framework for

Internet of Things devices built upon existing Internet and

access control standards supporting fine-grained and flexible

access control to constrained devices.

The key components in this framework are the

Authorization Server (AS) and our newly designed assertion

profile defined as subset of SAML and XACML (eXtensible

Access Control Markup Language) and compactly represented

in a JSON notation. Of special significance we used XACML

(eXtensible Access Control Markup Language) obligations to

enable any kind of local decisions in the device. Supporting

components are the extension of the Resource Directory for

publication of Device (D) capabilities for local decisions and

enforcement, and key management procedures used to

establish security between the Device(D) and the

Authorization Server (AS) / User (U).

Performance critical parts of this framework have been

implemented and tested using a object security based approach

on an example Device (D) and thereby shown that the

authorization procedures can be executed in a reasonable time-

frame on certain classes of constrained Devices (D). The

security evaluation elucidates the trade-offs and assumptions

that where made for this framework and specifies which

security assurances the framework provides.

The use of JWE as wrapper format for secure object is

suitable for the assertion but highly non-optimal for payloads

of a few bytes, which are common in CoAP. Both the JWE

header and the crypto payload could be made more compact

for this kind of deployment. Potential future work include

exploring and standardizing the use of stream-ciphers and

MAC for JWE. Other topics for standardization are our

assertion profile of SAML and XACML (eXtensible Access

Control Markup Language), and device registration of security

related meta-data using the Resource Directory.

XII. REFERENCES

[1] Ludwig Seitz, Goran Selander, Christian Gehrmann,
“Authorization Framework for the Internet-of-Things”,
IEEE 14th International Symposium on "A World of
Wireless, Mobile and Multimedia Networks"
(WoWMoM). pp. 1-6, 2013.

[2] S. Godik, and T. Moses (eds.), “eXtensible Access
Control Markup Language (XACML),” Organisation for
the Advancement of Structured Information Standards
(OASIS), Standard Version 2.0, February 2005.[Online].

 Available: http://www.oasis-open.org/committees/xacml

[3] E. Rissanen, and H. Lockhart (eds.), “SAML 2.0 Profile
of XACML Version 2.0,” Organization for the
Advancement of Structured Information Standards
(OASIS), Committee Specification, August 2010,
http://www.oasis-open.org/committees/xacml.

[4] L. Daigle and O. Kolkman, “The OAuth 2.0 Authorization

 Framework,” Internet Engineering Task Force (IETF),

 Request For Comments (RFC) 6749, October 2012,

 http://www.ietf.org/rfc/rfc6749.txt.

[5] Z. Shelby, K. Hartke, and C. Bormann, “Constrained

 Application Protocol (CoAP),” Internet Engineering Task

 Force, Internet-Draft draftietf-core-coap-14, March 2013,

 work in progress.

[6] M. Naedele, “An Access Control Protocol for Embedded

http://www.oasis-open.org/committees/xacml

79 | P a g e

 Devices,” in Proceedings of the fourth IEEE Conference

 on Industrial Informatics, INDIN. Singapore: IEEE,

 August 2006, pp. 565–596.

[7] E. Rescorla and N. Modadugu, “Datagram Transport

 Layer Security Version 1.2,” Internet Engineering Task

 Force (IETF), Request For Comments (RFC) 6347,

 January 2012, http://www.ietf.org/rfc/rfc6347.txt.

[8] Z. Shelby, S. Krco, and C. Bormann, “CoRE Resource

 Directory,” Internet Engineering Task Force, Internet-

 Draft draft-shelby-core-resourcedirectory-05, February

 2013, work in progress.

[9] M. Jones, E. Rescorla, and J. Hildebrand, “JSON Web

 Encryption (JWE),” Internet Engineering Task Force

 (IETF), Internet-Draft draftietf-jose-json-web-encryption-

 08, December 2012, work in progress.

