

170 | P a g e

ENSURING DATA INTEGRITY IN

CLOUD STORAGE USING ECC TECHNIQUE

S.Ramana
Research Scholar,

Dept. of Computer Science,

Osmania University, Hyderabad,Telangana,India

M.V.Ramana Murthy

Professor and B.O.S Chairman,

Dept. of Computer Science & Mathematics,

Osmania University, Hyderabad,Telangana,India

N Bhaskar
Research Scholar,

Dept. of Computer Science, Rayalaseema Univesrity,

Kurnool, A.P, India.

Abstract: The entire world is looking at the future and one of the future components in IT Enterprise is cloud computing which has become the

default solution to the increased storage costs of IT Enterprises. Many companies like Amazon, Google, Microsoft, IBM and so on are investing

huge amount in cloud storage and development and providing services to many users across the world.

With the increase costs in data storage devices as well as the fast exponential rate at which data is being generated it proves costly for enterprises

or individual users to frequently modify their hardware. Apart from reduction in storage costs, data outsourcing to the cloud also helps in

reducing the maintenance.

Cloud storage transfers the data of users to large data centers, which are located in different locations across the world, on which user does not

have any control. However, this unique feature of the cloud raises many new security issues which need to be understood and resolved clearly.

One of the important concerns that need to be answered is to assure the customer of the integrity i.e. correctness of his data in the cloud. As the

data is physically not accessible to the user the cloud should provide a way for the user to check if the integrity of his data is maintained or is

compromised. This paper provides a scheme which gives a proof of data integrity in the cloud which the customer can employ to check the

correctness of his data in the cloud. This proof can be agreed upon by both the cloud and the customer and can be incorporated in the Service

Level Agreement (SLA). This scheme ensures that the storage space used at the client side for running the algorithm is minimal which will be

beneficial for thin clients.

Key words: Cloud Storage, data centres, security, integrity, compromised, SLA.

I. INTRODUCTION
Cloud computing is matched with the early

production of electricity. Families, trades and municipalities

did not want to yield or trust on their own source of power.

They began connecting into a bigger power grid, maintained

and organized by power utilities. Along with this utility

linking came time and cost savings, in addition to bigger

access to, and more reliable availability of power.

Similarly, cloud computing signifies substantial

chance for service providers and enterprises. Cloud

computing has become a progressively popular means of

providing valuable IT-enabled business services. Accepting

cloud technology can be a reasonable way to get access to a

dynamically scalable, virtualized computing environment.

Optimal IT hardware, software, expertise and infrastructure

management resources that may not otherwise be available

from a cost perspective can be quickly installed and easily

scaled. Processes, applications and services can be available

on request, regardless of the user location or device. The

cloud provider is responsible for the setting, so

organizations can make use of resources for short periods of

time without having to maintain the setting when it is not

being used.

In this paper we provide a solution to the Data

Integrity problem in Cloud.

II. ISSUES IN CLOUD COMPUTING

While cloud computing models are eye-catching

because of their springiness and cost effectiveness, certain

tasks must be addressed in order to provide a feasible option

to traditional data services. First and foremost is the issue of

security. The externalized aspect of outsourcing can make it

harder to maintain data integrity and confidentiality, support

data and service availability, demonstrate compliance, and

secure highly available access to applications and

information. In short, cloud computing can contemporary an

added level of risk.

The comparative safety of cloud computing

services is an argumentative issue that may be postponing its

adoption. Issues barring the adoption of cloud computing are

due in large part to the private and public sectors.It is the

very nature of cloud computing-based services, private or

public, that promote external management of provided

services. This delivers great motivation to cloud computing

service providers to prioritize building and maintaining

strong management of secure services. Security issues have

been categorized into

 1.Availability

 2. Confidentiality

 3. Data Integrity

 4.Control

 5. Audit

III. DATA INTEGRITY IN CLOUD COMPUTING

Data Integrity in its widest meaning refers to the

honesty of information over its entire life cycle. In more

171 | P a g e

analytic terms, it is "the representational faithfulness of

information to the true state of the object that the

information represents, where representational faithfulness

is composed of four essential qualities or core attributes:

completeness, currency/timeliness, accuracy/correctness and

validity/authorization."

Data Integrity is very important in database

operations in particular and Data Warehousing and Business

Intelligence in general, because Data Integrity ensures that

data is of high quality, correct, consistent and accessible.

Cloud storage can be an eye-catching means of

outsourcing the day-to-day management of data, but

ultimately the accountability and liability for that data falls

on the company that owns the data, not the hosting provider.

With this in mind, it is important to understand some of the

causes of data corruption, how much responsibility a cloud

service provider holds, some basic best practices for

utilizing cloud storage safely, and some methods and

standards for monitoring the integrity of data regardless of

whether that data resides locally or in the cloud.

Integrity checking is essential in cloud storage for

the same reasons that data integrity is serious for any data

center. Data corruption can happen at any level of storage

and with any type of media. Here are some of the examples

of different media types causing corruption, Bit rot (the

weakening or loss of bits of data on storage media),

controller failures, deduplication, metadata corruption, and

tape failures. Metadata corruption can be the result of any of

the vulnerabilities listed above, such as bit rot, but are also

vulnerable to software glitches outside of hardware error

rates. Unfortunately, a side effect of deduplication is that a

corrupted file, block, or byte affects every related piece of

data tied to that metadata. The truth is that data corruption

can happen anywhere within a storage environment. Data

can become corrupted simply by migrating it to a different

platform, i.e., sending your data to the cloud. Cloud storage

systems are still data centers, with hardware and software,

and are still vulnerable to data corruption. One needs to look

no further than the recent highly publicized Amazon failure.

Not only did many companies suffer from prolonged

downtime, but 0.07 percent of their customers actually lost

data. It was reported that this data loss was caused by

‟recovering an inconsistent data snapshot of Amazon ESB

volumes. What this translates to is that data in Amazon‟s

system became corrupted, and as a result, customers lost

data.

Whenever data is lost, especially valuable data,

there is a tendency to scramble and assign blame. Often in

the IT world, this can result in loss of jobs, downfall in

company revenue, and, in severe cases, business expiry. As

such, it is serious to understand how much legal

responsibility the cloud service provider, as per the service

level agreement (SLA), has and to ensure that every possible

step has been taken to prevent data loss. As with many legal

documents, SLAs are often written to the benefit of the

provider, not to the customer. Many cloud service providers

offer varying tiers of protection, but as with any storage

provider they do not assume responsibility for the integrity

of your data.

Cloud SLA language that contains explicit

statements protecting the cloud provider if data is lost or

corrupted is common practice. An example of this language

is found in the Amazon Customer Web Services agreement,

which states, “WE… MAKE NO REPRESENTATIONS

OR WARRANTIES OF ANY KIND … THAT THE

SERVICE OFFERINGS OR THIRD PARTY CONTENT

WILL BE UNINTERRUPTED, ERROR FREE OR FREE

OF HARMFUL COMPONENTS, OR THAT ANY

CONTENT … WILL BE SECURE OR NOT OTHERWISE

LOST OR DAMAGED.” In fact this agreement even goes

as far as to suggest that a customer make “frequent

archives” of their data. As mentioned before, the

responsibility for managing the integrity of data, whether in

a data center, private cloud, hybrid cloud or public cloud

always falls on the company that owns the data.

There are some common sense best methods that

will allow a company to take benefit of the springiness and

approachability of the cloud, without putting its data at risk.

The principle of data protection is to distribute the risk so

that the likelihood of data loss is reduced. Even when

storing data in the cloud, it makes sense to keep a main copy

and a backup copy of the data onsite so that access to the

data is not dependent upon network performance or

connectivity. By following these basic best methods and

knowing the details of the cloud provider‟s SLA, the

building blocks are in place to implement a method for

proactively observing the integrity of data regardless of the

storage platform or location.

It‟s hard to argument that the cloud industry has

taken a few punches in the media recently, especially with

large vendors like Iron Mountain withdrawing their basic

cloud storage services and the previously discussed data loss

at Amazon S3. However, the moral of this story is not that

the cloud is an risky storage platform, but rather that when

examining and employing cloud strategies, there are more

factors to consider than simply cost per gigabyte stored.

Cloud storage offers many advantages to companies of any

size when properly employed. What cloud doesn‟t do is

eliminate the need for intelligent data management

strategies. Regardless of how or where data is stored, it is

absolutely crucial to make certain it will be accessible and

restorable when needed. This assurance is at the very heart

of data integrity monitoring and verification.

Many algorithms have been proposed to verify

whether the data present in the cloud has been modified or

not and they showed best results for the static data.

A. Hash Function: The simplest Proof of retrievability

(POR) scheme can be made using a keyed hash function

hk(F). In this scheme the verifier, before archiving the data

file F in the cloud storage, pre-computes the cryptographic

hash of F using hk(F) and stores this hash as well as the

secret key K. To check if the integrity of the file F is lost the

verifier releases the secret key K to the cloud archive and

asks it to compute and return the value of hk(F). By storing

multiple hash values for different keys the verifier can check

172 | P a g e

for the integrity of the file F for multiple times, each one

being an independent proof.

 Though this scheme is very simple and easily

implementable the main drawback of this scheme are the

high resource costs it requires for the implementation. At the

verifier side this involves storing as many keys as the

number of checks it want to perform as well as the hash

value of the data file F with each hash key. Also computing

hash value for even a moderately large data files can be

computationally burdensome for some clients(PDAs, mobile

phones, etc). At the archive side, each invocation of the

protocol requires the archive to process the entire file F.

This can be computationally burdensome for the archive

even for a lightweight operation like hashing. Furthermore,

it requires that each proof requires the prover to read the

entire file F - a significant overhead for an archive whose

intended load is only an occasional read per file, were every

file to be tested frequently.

B. Proof of Retrievability: Ari Juels and Burton S. Kaliski

Jr [4] proposed a scheme called Proof of retrievability for

large files using ”sentinels”. In this scheme, unlike in the

key-hash approach scheme, only a single key can be used

irrespective of the size of the file or the number of files

whose retrievability it wants to verify. Also the archive

needs to access only a small portion of the file F unlike in

the key-has scheme which required the archive to process

the entire file F for each protocol verification. This small

portion of the file F is in fact independent of the length of F.

The schematic view of this approach is shown in the

fig 1

Fig. 1 Schematic view of a proof of retrievability based on inserting

random sentinels in the data file

In this scheme special blocks (called sentinels) are

hidden among other blocks in the data file F. In the setup

phase, the verifier randomly embeds these sentinels among

the data blocks. During the verification phase, to check the

integrity of the data file F, the verifier challenges the prover

(cloud archive) by specifying the positions of a collection of

sentinels and asking the prover to return the associated

sentinel values. If the prover has modified or deleted a

substantial portion of F, then with high probability it will

also have suppressed a number of sentinels. It is therefore

unlikely to respond correctly to the verifier. To make the

sentinels indistinguishable from the data blocks, the whole

modified file is encrypted and stored at the archive. The use

of encryption here renders the sentinels indistinguishable

from other file blocks. This scheme is best suited for storing

encrypted files. As this scheme involves the encryption of

the file F using a secret key it becomes computationally

cumbersome especially when the data to be encrypted is

large. Hence, this scheme proves disadvantages to small

users with limited computational power (PDAs, mobile

phones etc.). There will also be a storage overhead at the

server, partly due to the newly inserted sentinels and partly

due to the error correcting codes that are inserted. Also the

client needs to store all the sentinels with it, which may be a

storage overhead to thin clients (PDAs, low power devices

etc.).

C. Data integrity Proofs in cloud storage: R Sravan Kumar

and Ashuthosh Saxena [5] of Infosys Technologies Ltd,

Hyderabad presented a scheme which does not involve the

encryption of the whole data. We encrypt only few bits of

data per data block thus reducing the computational

overhead on the clients as shown in fig 2. The client storage

overhead is also minimized as it does not store any data with

it. Hence our scheme suits well for thin clients. In this data

integrity protocol the verifier needs to store only a single

cryptographic key - irrespective of the size of the data file F-

and two functions which generate a random sequence. The

verifier does not store any data with it. The verifier before

storing the file at the archive, preprocesses the file and

appends some meta data to the file and stores at the archive

as shown in fig 3. At the time of verification the verifier

uses this meta data to verify the integrity of the data. It is

important to note that our proof of data integrity protocol

just checks the integrity of data i.e. if the data has been

illegally modified or deleted. It does not prevent the archive

from modifying the data. In order to prevent such

modifications or deletions other schemes like redundant

storing etc, can be implemented.

Fig. 2 A data block of the file F with random bits selected in

it

Fig.3 The encrypted file F which will be stored in the cloud.

 It should be noted that this scheme applies only to

static storage of data. It cannot handle to case when the data

need to be dynamically changed. Hence developing on this

173 | P a g e

will be a future challenge. Also the number of queries that

can be asked by the client is fixed apriori. But this number is

quite large and can be sufficient if the period of data storage

is short.

D. Data integrity Proofs in cloud storage: In this paper,

Wenjun Luo and Guojing Bai [7] have proposed a remote

data possession checking protocol with the support public

verifiability. They used HLAs and RSA construction to

complete the protocol. The support of public verifiability

makes the protocol very flexible, since the user can commit

the data possession to check the TPA. And since the

protocol based on the RSA problem with large public

exponent, so the security of the data storage is enhanced.

This scheme is consisted of four algorithms

KeyGen SigGen GenProof and Verify Proof.

KeyGen : a key generation algorithm that is run by the user

to setup the scheme.

SigGen : used by the user to generate verification metadata,

which may consist of MAC, signatures, or other related

information that will be used for auditing.

GenProof: run by the cloud server to generate a proof of

data storage correctness.

Verify Proof: run by the TPA to verify the proof from the

cloud server.

Our public verify system can be constructed from the above

auditing scheme in two phases:

Setup: The user initializes the public and secret

parameters of the system by executing KeyGen, and

preprocesses the data file F by using SigGen to generate the

verification metadata. The user then stores the data file F at

the cloud server, then deletes its local copy, and publishes

the verification metadata to TPA for later audit. As part of

pre-processing, the user may alter the data file F by

expanding it or including additional metadata to be stored at

server.

Audit: The TPA issues an audit message or

challenge to the cloud server to make sure that the cloud

server has retained the data file F properly at the time of the

audit. The cloud server will derive a response message from

a function of the stored data file F by executing GenProof.

Using the verification metadata, the TPA verifies the

response via Verify Proof .

IV. PROPOSED SOLUTION

 The proposed algorithm is used to verify whether the

user data in the cloud is altered by some unauthorized party

or not.

 Here, initially the client will generate the checksum

for the data to be placed in the cloud and stores the

checksum in his local site and upload the data into the cloud.

Then, he will use the stored checksum to verify the data

integrity for the data being placed in the cloud.

 The algorithm consists of two phases whose

working is as follows.

(Phase 1): Generating the Checksum

The Generation of checksum is explained pictorially through

activity diagram in fig(5)

Step 1: Generate a 128 bit random vector consisting of the

positions in the data (i.e, the locations of the data) (Call it

as A).

Step 2: Read the data from the cloud, based on the locations

present in the random vector. Let the read data be

called as „B‟.

Step 3: Generate a 128 bit key (Random Number) and call it

as „C‟.

Step 4: Perform X-OR operation between B and C.

Step 5: The result of step 4 is called as the valuator, say I

(First Level Encryption).

Step 6: The valuator is now again encrypting using any of

the standard encryption algorithms(both conventional and

public key cryptosystems).

(Second Level Encryption).

Step 7: The result of step 6 is an encrypted value called as

checksum.

Step 8: Place the checksum (Result of Step 7) along with the

Data in the Cloud (Optional).

Step 9: The Random Vector „A‟ and the 128 bit key should

be kept secret, so as to protect from the attacks and used for

verification of the data later by the user.

 Fig. 5 Activity Diagram describing the generation of Checksum.

 (Phase 2): Verifying the Checksum

174 | P a g e

Note: Here the data only is placed in the cloud and the

checksum, the 128 bit key(„C‟) and the location vector („A‟)

are kept with the user.

The verification of checksum is explained pictorially

through activity diagram in fig(6)

Step 1: The user will read the 128-bit data from the cloud

based on the location vector („A‟) and names it as „B‟.

Step 2: The generated „B‟ is X-OR ed with the already

stored 128 bit key („C‟) at the user.

 (First Level Encryption)

Step 3: The resultant of step 2 is now again encrypted using

the same standard encryption algorithm that was used at the

time of generating the checksum.

(Second Level Encryption)

Step 4: The result of step 3 is compared with the already

stored checksum at the user. If they are matched, then Data

Integrity is not lost. If they are not matched then Data

integrity is lost.

Fig.6 Activity Diagram Describing The Verification and Checking Data

Integrity

Advantages:

1. Simple technique (Old wine in new bottle)

2. Easy to implement.

3. Mobile devices / Thin Clients can also implement this

algorithm in a very easy and efficient way.

4. Easy to apply for dynamic changing of data.

V. COMPARATIVE STATEMENT

Below are the details about the performance of the

algorithm using two Conventional Encryption Algorithms

and one public key cryptosystem algorithm „ECC‟.

Here a Data of Size 40 KB is considered (4096 Bytes) and

following „aprior‟ time is recorded.

Operation AES Blowfish ECC

CHECKSUM

Generation

(Time in

Milli Seconds)

3853 3915 3806

CHECKSUM

Verification

(Time in

Milli Seconds)

3838 3900 3853

 Table 1 .Comparative study of three algorithms.

VI. CONCLUSION

Due to the increasing demand in Cloud Computing

(Providing Database as a service), many companies like

IBM, Amazon, Google etc are moving to Data Storage in

Cloud. The concerned factor about cloud is the security

issue. This paper deals with the proof of checking whether

data is correct or not in the cloud. The proposed solution

uses the checking of correctness of data in cloud for

dynamic change and easily accessible by any mobile device.

The technique has two levels of Generation and Verification

Process

This proposed solution is easily accessible by any Mobile

device in an efficient manner, If the attacker corrupts the

data, then sufficiently/efficiently he cannot tamper the

checksum. The probability of corrupting the checksum

accordingly is very very high.

VII. REFERENCES
[1] Enhancing Security through Steganography by using

Sudoku puzzle and ECC Algorithm by B.Chitra, Depavath

Harinath, M.V. Ramana Murthy, K. Ramesh Babu, IJRSET,

ISSN 2394-739X

[2] Encryption techniques for Big Data in a cloud by Depavath

Harinath, K. Ramesh Babu, Mrs. B.Chitra, M.V. Ramana

Murthy, IJMTER, ISSN (ONLINE) : 2349-9745

[3]Won Kim, “Cloud Computing: Today and Tomorrow”,

Journal of Object Technology, January/February 2009.

[4] A. Juels and B. S. Kaliski, Jr., “Pors: proofs of retrievability

for large files,” in CCS ‟07: Proceedings of the 14th ACM

conference on Computer and communications security. New

York, NY, USA: ACM, 2007, pp. 584–597.

[5] Shravan Kumar Rana and AshutoshSaxena, “Data Integrity

Proofs in Cloud Storage” in IEEE 2011 Paper.

[6] Jeffrey Naruchitparames, Mehmet HadiGunes¸ “Enhancing

Data Privacy and integrity in the cloud” of IEEE 2011 Paper

