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ABSTRACT 

In this study, the highly pathogenic avian influenza epidemic model with vertical transmission function in both 

poultry and human being is investigated. The basic reproduction number 0R for the model is defined. The 

equilibriums are established and show that they are global asymptotically stable. Finally a numerical example is 

also included to illustrate the effectiveness of the proposed model.  
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I. INTRODUCTION  

The avian influenza (avian flu or bird flu) refers to the influenza that is caused by viruses adapted to birds. 

Avian influenza A viruses are classified into two categories: low pathogenic avian influenza A (LPAI) and 

highly pathogenic avian influenza A (HPAI).Avian influenza is a zoonotic disease caused by the transmission of 

the avian influenza A virus, such as H5N1, H7N1, H7N2, H7N3, H7N7, H9N2 and H7N9, from birds to 

humans. The avian influenza A H5N1 virus has caused more than 500 human infections worldwide with nearly 

a 60% death rate since it was first reported in Hong Kong in 1997. The first reports of bird flu in India came 

from the village of Navapur in the Nandurbar district of Maharashtra on 19 February 2006, Villagers reported a 

large number of bird deaths in the village. Maharashtra State Animal Husbandry Ministry authorities rushed to 

the spot. Lab analysis proved that the poultry was indeed affected with the H5N1 virus, nawapur. India had 

reported outbreaks of Highly Pathogenic Avian influenza at various epicenters in Delhi, Gwalior (MP), Rajpura 

(Punjab), Hissar (Haryana), Bellary (Karnataka), Allappuzha and Kottayam (Kerala), Ahmedabad (Gujarat), 

Daman (Daman) and Khordha and Angul (Odisha during October, 2016 to February, 2017.  Highly pathogenic 

avian influenza A H5N1 viruses have spread from Asia to Africa and Europe infecting poultry, humans and wild 

birds. The avian influenza pathogenic has a high death rate, which is about 100 percent for birds and more than 

70 percent for humens [1]. Che [2] proposed the highly pathogenic avian influenza epidemic model with 

saturated contact rate. Liu et al. [3] studied a nonlinear dynamics of avian influenza epidemic models. Tasmi 

and Nuraini [4] proposed avian influenza model with optimal vaccination and treatment schedules. Zhao et al. 

[5] considered stability and persistence of an avian influenza epidemic model with impacts of climate change. 



 

536 | P a g e  
 

Avian influenza modeling studies involving humans and birds was carried out in Gumel [6] and Iwami [7]. The 

number of mathematical modeling studies have been carried out to quantify the potential burden of an influenza 

pandemic in human being and to assess various control strategies considered by et al. [8-17].  

 In this study global dynamics of highly pathogenic avian influenza epidemic model with vertical transmission 

function is proposed. Mathematical model is presented in the second section. The disease free equilibrium and 

the endemic equilibrium are derived in the third section. In the fourth section, stability analysis of the model is 

investigated by using stability theory of differential equations. The fifth section contains numerical simulation. 

In the last sixth section we give conclusion.  

 

II. MATHEMATICAL MODEL 

2.1 Basic Model. 

Shuqin Che et al. [2] has proposed the following four dimensional system of autonomous differential equation 

model for the avian influenza 
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(2.1) 

here ( )X t and ( )Y t  are the numbers of susceptible poultry and infected poultry of birds respectively, ( ),S t  

( )I t and ( )R t the number of susceptible, infected and recovered of human being respectively. The parameters 

c and b  are respectively the natural birth rate of Avian and human being. d and  are respectively the natural 

mortality of poultry and human being. m and  are respectively the poultry and human mortality due to illness. 

 stands for infectious rate of susceptible poultry to infected poultry,  stands for infected poultry of the 

infection rate of susceptible individuals,   is the recovery rate that infects individuals through treatment. When 

Y is small, the contact ratio, infected poultry and susceptible poultry, is appromately proportional to the Y : with 

the increase of ,Y  the contact rate gradually reaches saturation. When Y is very largy, it is close to a constant 

.  The same way to explain (1 ) ,Y  that is to say,  is a parameter which is effects of infectious 

diseases, when the contact rate of the disease is saturated. 

 

2.2 Model with Vertical Transmission Function 

The model (2.1) with vertical transmission function in both poultry and human being is given by
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(2.2) 

where ,p q are suitable constant. The rest of the parameters have similar meaning as for as the model (2.1). 
  

 

III. EQUILIBRIA OF THE SYSTEM 

The first four equation of system (2.2) do not contain ,R by the method of Vanden Driessche and Watmough 

Diekmann [10] 
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(3.1)      

It can be checked that the system (3.1) has two non-negative equilibrium and one of them disease free 

equilibrium  , , , , 0, , 0
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 (3.2) Solving (3.2) we get 
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IV.  LINEAR STABILITY ANALYSIS 

Theorem 4.1 The disease free equilibrium 
0

E  is locally asymptotically stable if 1,
0

R   and disease free 

equilibrium 
0

E  is unstable if 1.
0

R    

Proof. The Jacobian matrix of system (3.1) is  
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Now,  Jacobian matrix of system (3.1) at , 0, , 0 ,
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The roots of (4.1) are  ,d ,  ( ),qb         ( )
c
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The first three roots having negative real parts and fourth root ( )
c
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    will have negative real part if 

1.
0

R  Thus all roots of (4.1) have negative real parts so 
0

E  is locally asymptotically stable if 1,
0

R  and the 
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c
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d


     will have positive real part if 1,

0
R   so 

0
E  is an unstable.

 

Theorem 4.2 The disease free equilibrium 
0

E  is globally asymptotically stable if 1.
0

R  . 

Proof. Consider the Lyapunov function 
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By the relationship of arithmetic mean and geometric mean. 
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V. NUMERICAL SIMULATION 

In this section we present computer simulation of solution of the system. To illustrate the results numerically, 

choose 3,  =0.04,c   d 0.06, 2,b   

2, 1.2,m   0.502, 0.08, 0.08,     0.02, 0.03,p q  0.038  and 

 (0), (0), (0), (0)X Y S I  (30,10,15,5).Then (50, 0, 25, 0),
0

E  0.95 1.
0

R    Therefore by theorem (4.2), 

0
E  is a globally asymptotically stable. Fig. 1 shows that ( )X t approaches to its steady-state value while 

( )Y t approaches to zero as time progresses.   
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Figure 1. Here (0) 30, (0) 10, (0) 15, (0) 5, 3, .04, .06, 2, 2, 1.2,X Y S I c d b m            
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                                0
.95 1..038, .502, .08, .08, .02, .03,p q R            

Similarly Fig. 1 shows that ( )S t approaches to its steady-state value while ( )I t approaches to zero as time 

progresses. Finally disease dies out.   

Again suppose the parameters as 

3,  =0.04, d 0.06, 2, 2, 1.2,c b m      0.502, 0.08,   0.08, 

 0.02, 0.03, 2,  and (0), (0), (0), (0) (30,10,15,5).p q X Y S I    Then 

(1.11,1.42,15.05, 0.4470),E  50 1.
0

R    By theorem (4.4), E  is a globally asymptotically stable. Fig. 2 

show that ( ), ( ), ( )X t Y t S t and ( )I t approach to their steady-state values as time progresses, the disease will be 

exist. 
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     Figure 2. Here (0) 30, (0) 10, (0) 15, (0) 5, 3, .04, .06, 2, 2, 1.2,X Y S I c d b m          
 

                                0
50 1.2, .502, .08, .08, .02, .03,p q R            

 We change the value of p and keeping other parameters fixed, we seen that ( )I t increases as p increases. It 

follows from Fig. 3. 

 

                      Figure 3. The dependence of ( )I t on the parameter p keeping other parameters fixed. 

Again we change the value of q and keeping other parameters fixed, we seen that ( )I t increases as q increases. 

It follows from Fig. 4. 
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                             Figure 4. The dependence of ( )I t on the parameter q keeping other parameters fixed. 

 

VI.  CONCLUSION  

In this study we have discussed the global stability of highly pathogenic avian influenza epidemic model with 

vertical transmission function in poultry and human being. First and second vertical transmission function are 

taken to represents the interaction between susceptible and infected poultry and human being respectively. Our 

main aim of mathematical epidemiology is to understand how to control or eradicate diseases. We have proved 

that if 1
0

R  then 
0

E is globally asymptotically stable is disease dies out. When 1
0

R   the endemic 

equilibrium E exists globally stable i.e disease persists. Numerical simulation indicates that when the disease is 

endemic, the steady state value ( )I t  of the infectives increases as ,p q increases.  
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