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ABSTRACT 

In this paper, common fixed point theorems is proved in dislocated quasi b -metric spaces. Our result 

generalized, modified, some existing result in the literature. 
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I. INTRODUCTION AND PREILMANARIES 

Frechet[5] introduced the notion of metric space in 1906. Hitzler and Seda[8] introduced the notion of dislocated 

metric spaces. Zeyada et al.[3] generalized the result of Hitzler and Seda[8] and introduced the concept of 

complete dislocated quasi metric space. In 1989, Bakhtin[4] introduced the b -metric space as a generalization 

of metric space and investigated some fixed point theorem in such spaces. The concept of quasi b -metric spaces 

given by Shah and Huassain[6] in 2012 and obtained some fixed point results. Chakkrid and Cholotis[2] 

introduced the concept of dislocated quasi b -metric spaces. Recently Mujeeb Ur Rahman and Muhammad 

Sarwar[7] define the notion of coupled coincidence fixed point and proved a coupled coincidence fixed point 

theorem in dislocated quasi b-metric space. Aage and Golhare[1] proved common fixed point theorem in 

dislocated quasi b-metric space. 

In this paper, common fixed point theorem is proved in dislocated quasi b-metric space satisfying contractive 

condition of integral type. 

Definition 1.1[3&8] Let 𝑋 be a non empty set and let 𝑑:𝑋 × 𝑋 → [0,∞) be a function satisfying the following 

conditions: 

(d1) 𝑑 𝑥 , 𝑥 = 0, 

(d2) 𝑑 𝑥 , 𝑦 =𝑑 𝑦 , 𝑥 =0 implies 𝑥 = 𝑦, 

(d3) 𝑑 𝑥 , 𝑦 = 𝑑 𝑦 , 𝑥  for all 𝑥 , 𝑦 ∈ 𝑋, 

(d4)𝑑 𝑥 , 𝑦 ≤ 𝑑 𝑥 , 𝑧 + 𝑑 𝑧 , 𝑦  for all 𝑥 , 𝑦, 𝑧 ∈ 𝑋. 

If 𝑑 satisfies conditions only (d2) and (d4), then 𝑑 is called a dislocated quasi metric on 𝑋. 

If 𝑑 satisfies conditions (d1), (d2) and (d4) then 𝑑 is called a quasi metric on 𝑋. If 𝑑 satisfies conditions (d2), (d3) 

and (d4) then 𝑑 is called a dislocated metric on 𝑋 .If 𝑑 satisfies all the conditions (d1), (d2), (d3) and (d4) then 𝑑 is 

called a metric on 𝑋. 
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Definition 1.2[4]. Let 𝑋 be a nonempty set and let 𝑠 ≥1 be a given real number. A function 𝑑:𝑋 × 𝑋 → [0,∞) 

is called a b -metric if for all  𝑥,𝑦, 𝑧 ∈ 𝑋 the following conditions are satisfied:  

      (i) 𝑑 𝑥, 𝑦 = 0 if and only if 𝑥 = 𝑦; 

      (ii) 𝑑 𝑥, 𝑦 = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋; 

      (iii) 𝑑(𝑥, 𝑦) ≤ 𝑠[𝑑 𝑥, 𝑧 + 𝑑 𝑧, 𝑦 ] for all  𝑥, 𝑦, 𝑧 ∈  𝑋. 

The pair (𝑋,𝑑) is called a b -metric space. The number 𝑠 ≥1 is called the coefficient of (𝑋,𝑑). 

Definition 1.3.[6] Let 𝑋 be a non-empty set. Let 𝑑:𝑋 × 𝑋 → [0,∞) be a mapping and 𝑠 ≥1 be a constant satisfy 

the following conditions 

       (i)  𝑑 𝑥, 𝑦 = 0 = 𝑑(𝑦, 𝑥) iff 𝑥 = 𝑦, for all 𝑥, 𝑦 ∈ 𝑋, 

      (ii) 𝑑(𝑥, 𝑦) ≤ 𝑠[𝑑 𝑥, 𝑧 + 𝑑(𝑧, 𝑦)], for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. 

Then pair (𝑋,𝑑) is called quasi b -metric space. 

Definition 1.4[2]. Let 𝑋 be a non-empty set. Let the mapping 𝑑:𝑋 × 𝑋 → [0,∞) and constant 𝑠 ≥1 satisfy 

following conditions: 

      (i)  𝑑 𝑥, 𝑦 = 0 = 𝑑(𝑦, 𝑥) ⇒ 𝑥 = 𝑦, for all 𝑥, 𝑦 ∈ 𝑋, 

      (ii) 𝑑(𝑥, 𝑦) ≤ 𝑠[𝑑 𝑥, 𝑧 + 𝑑(𝑧, 𝑦)], for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. 

Then the pair (𝑋,𝑑) is called dislocated quasi b -metric space or in short dq b -metric space. 

Example 1.1. Let 𝑋 = ℝ and suppose 

𝑑 𝑥, 𝑦 =  2𝑥 − 𝑦 2 +  2𝑥 + 𝑦 2 

Then (𝑋,𝑑) is a dislocated quasi b-metric space with the coeficient 𝑠 = 2. But it is not dislocated quasi-metric 

space nor b-metric space. 

Definition 1.5[2]. Let (𝑋,𝑑) be a dq b -metric space. A sequence  𝑥𝑛  in 𝑋 is called to be dq b -converges to 

𝑥 ∈ 𝑋 if  

lim
𝑛→∞

𝑑 𝑥𝑛 , 𝑥 = 0 = lim
𝑛→∞

𝑑(𝑥, 𝑥𝑛) 

In this case 𝑥 is called dq b -limit of  𝑥𝑛   and is written as 𝑥𝑛 → 𝑥. 

Definition 1.6[2]. Let (𝑋,𝑑) be a dq b -metric space. A sequence  𝑥𝑛  in 𝑋 is called dq b -Cauchy sequence if  

lim
𝑛 ,𝑚→∞

𝑑 𝑥𝑛 , 𝑥𝑚  = 0 = lim
𝑛 ,𝑚→∞

𝑑(𝑥𝑚 , 𝑥𝑛) 

Definition 1.7[2]. A dq b -metric space (𝑋,𝑑) is said to be dq b -complete if every dq b -Cauchy sequence in it 

is dq b -convergent in 𝑋. 

Proposition 1.1[2]. Every subsequence of a dq b -convergent sequence in a dq b -metric space (𝑋,𝑑) is dq b -

convergent sequence. 

Proposition 1.2[2]. Every subsequence of a dq b -Cauchy sequence in a dq b -metric space (𝑋,𝑑) is dq b -

Cauchy sequence.metric space. 

Lemma 1.1. Limit of a convergent sequence in dislocated quasi b -metric space is unique. 

Lemma 1.2. Let (X; d) be a dislocated quasi b -metric space and  𝑥𝑛   be a sequence in dq b -metric space such 

that 
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𝑑 𝑥𝑛 , 𝑥𝑛+1 ≤ 𝛼 𝑑(𝑥𝑛−1, 𝑥𝑛) 

for 𝑛 = 1,2,3,…, 0 ≤ 𝛼𝑠 < 1, 𝛼 ∈ [0,1) and 𝑠 is defined in dq b -metric space. Then  𝑥𝑛   is a Cauchy sequence 

in 𝑋. 

 

II.  MAIN RESULT. 

Theorem 2.1. Let  𝑋,𝑑  be a complete dislocated quasi b-metric space and let 𝑓,𝑔:𝑋 → 𝑋 be a self mappings 

on 𝑋. For 𝑠 ≥ 1 satisfying : 

(2.1.1)             𝜑(𝑡)𝑑𝑡
𝑑(𝑓𝑥 ,𝑔𝑦 )

0
≤ 𝜓  𝜑(𝑡)𝑑𝑡

𝑀(𝑥 ,𝑦)

0
  

where  

 𝑀 𝑥, 𝑦 = 𝜆𝑑 𝑥, 𝑦 + 𝜇  
𝑑 𝑥 ,𝑓𝑥 𝑑(𝑦 ,𝑔𝑦 )

1+𝑑(𝑥 ,𝑦)
 + 𝛾  

𝑑 𝑦 ,𝑓𝑥 𝑑(𝑥 ,𝑔𝑦 )

1+𝑑(𝑥 ,𝑦)
  and 𝜑 ∈ Φ, 𝜓 ∈ Ψ. 

For all 𝑥, 𝑦 ∈ 𝑋 such that 1 + 𝑑(𝑥, 𝑦) ≠ 0 and 𝜆, 𝜇, 𝛾 are non-negative reals with 𝜆 + 𝜇 < 1. Then 𝑓 and 𝑔 have 

a unique common fixed point. 

Proof. Let 𝑥0 ∈ 𝑋 be an arbitrary point in 𝑋 and define  

   𝑥𝑛+1 = 𝑓𝑥𝑛          and         𝑥𝑛+2 = 𝑔𝑥𝑛+1,             𝑛 = 0,1,2,… . 

Consider 

 𝜑 𝑡 𝑑𝑡 =
𝑑(𝑥𝑛+1 ,𝑥𝑛+2)

0
 𝜑 𝑡 𝑑𝑡
𝑑(𝑓𝑥𝑛 ,𝑔𝑥𝑛+1)

0
  

            ≤  𝜓   𝜑(𝑡)𝑑𝑡
𝑀(𝑥𝑛 ,𝑥𝑛+1)

0
                                              (2.1.2) 

where 

𝑀 𝑥𝑛 , 𝑥𝑛+1 ≤ 𝜆𝑑 𝑥𝑛 , 𝑥𝑛+1 + 𝜇  
𝑑 𝑥𝑛 ,𝑓𝑥𝑛  𝑑(𝑥𝑛+1 ,𝑔𝑥𝑛+1)

1+𝑑(𝑥𝑛 ,𝑥𝑛+1)
 + 𝛾  

𝑑 𝑥𝑛+1 ,𝑓𝑥𝑛  𝑑(𝑥𝑛 ,𝑔𝑥𝑛+1)

1+𝑑(𝑥𝑛 ,𝑥𝑛+1)
   

                  ≤  𝜆𝑑 𝑥𝑛 , 𝑥𝑛+1 + 𝜇  
𝑑 𝑥𝑛 ,𝑥𝑛+1 𝑑(𝑥𝑛+1 ,𝑥𝑛+2)

1+𝑑(𝑥𝑛 ,𝑥𝑛+1)
 + 𝛾  

𝑑 𝑥𝑛+1 ,𝑥𝑛+1 𝑑(𝑥𝑛 ,𝑥𝑛+2)

1+𝑑(𝑥𝑛 ,𝑥𝑛+1)
   

But  1 + 𝑑 𝑥𝑛 , 𝑥𝑛+1 > 𝑑(𝑥𝑛 , 𝑥𝑛+1) 

or          
𝑑(𝑥𝑛 ,𝑥𝑛+1)

1+𝑑(𝑥𝑛 ,𝑥𝑛+1)
< 1. 

Thus, we have 

𝑀 𝑥𝑛 , 𝑥𝑛+1 < 𝜆𝑑 𝑥𝑛 , 𝑥𝑛+1 + 𝜇 𝑑(𝑥𝑛+1, 𝑥𝑛+2)  

that is  𝑑 𝑥𝑛+1 , 𝑥𝑛+2 < 𝜆𝑑 𝑥𝑛 , 𝑥𝑛+1 + 𝜇 𝑑(𝑥𝑛+1, 𝑥𝑛+2)  

 1 − 𝜇 𝑑 𝑥𝑛+1, 𝑥𝑛+2 < 𝜆𝑑 𝑥𝑛 , 𝑥𝑛+1   
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𝑑 𝑥𝑛+1 , 𝑥𝑛+2 <
𝜆

 1−𝜇 
𝑑 𝑥𝑛 , 𝑥𝑛+1     

𝑑 𝑥𝑛+1 , 𝑥𝑛+2 < 𝑘 𝑑 𝑥𝑛 , 𝑥𝑛+1 ,  where    𝑘 =
𝜆

 1−𝜇 
< 1. 

Hence by (2.1.2), we have 

 𝜑 𝑡 𝑑𝑡
𝑑(𝑥𝑛+1 ,𝑥𝑛+2)

0
 ≤  𝜓   𝜑(𝑡)𝑑𝑡

𝑘  𝑑 𝑥𝑛 ,𝑥𝑛+1 

0
 . 

If  𝑘 < 1 then by inductivity, we obtain 

 𝜑 𝑡 𝑑𝑡
𝑑 𝑥𝑛+1 ,𝑥𝑛+2 

0
 ≤  𝜓   𝜑 𝑡 𝑑𝑡

𝑘  𝑑 𝑥𝑛 ,𝑥𝑛+1 

0
 ≤  𝜓   𝜑 𝑡 𝑑𝑡

𝑘2  𝑑 𝑥𝑛−1 ,𝑥𝑛  

0
  

                                                                                 ≤ ⋯ ≤ 𝜓   𝜑(𝑡)𝑑𝑡
𝑘𝑛+1  𝑑 𝑥0 ,𝑥1 

0
 .  

So that for any 𝑚 > 𝑛, we get 

 𝜑 𝑡 𝑑𝑡 =  𝜑 𝑡 𝑑𝑡
𝑠𝑑 𝑥𝑛 ,𝑥𝑛+1 +𝑠𝑑 𝑥𝑛+1 ,𝑥𝑚  

0

𝑑 𝑥𝑛 ,𝑥𝑚  

0
              

                =  𝜑 𝑡 𝑑𝑡
𝑠𝑑 𝑥𝑛 ,𝑥𝑛+1 +𝑠

2𝑑 𝑥𝑛+1 ,𝑥𝑛+2 +𝑠
2𝑑(𝑥𝑛+2 ,𝑥𝑚 )

0
  

                           =  𝜑 𝑡 𝑑𝑡
𝑠𝑑 𝑥𝑛 ,𝑥𝑛+1 +𝑠

2𝑑 𝑥𝑛+1 ,𝑥𝑛+2 +𝑠
3𝑑 𝑥𝑛+2 ,𝑥𝑛+3 +⋯+𝑠𝑚−𝑛𝑑(𝑥𝑚−1 ,𝑥𝑚 )

0
  

                           ≤  𝜓   𝜑 𝑡 𝑑𝑡
𝑠𝑘𝑛𝑑 𝑥0 ,𝑥1 +𝑠

2𝑘𝑛+1𝑑 𝑥0 ,𝑥1 +𝑠3𝑘𝑛+2𝑑 𝑥0 ,𝑥1 +⋯+𝑠𝑚−𝑛𝑘𝑚−1𝑑 𝑥0 ,𝑥1 

0
  

                          ≤  𝜓  𝜑 𝑡 𝑑𝑡
(𝑠𝑘𝑛+𝑠2𝑘𝑛+1+𝑠3𝑘𝑛+2+⋯+𝑠𝑚−𝑛𝑘𝑚−1)𝑑 𝑥0 ,𝑥1 

0
   

                          ≤  𝜓  𝜑 𝑡 𝑑𝑡
𝑠𝑘𝑛

1−𝑠𝑘
0

 . 

Since  𝑠𝑘, 𝑘 < 1, we have 

  𝜑 𝑡 𝑑𝑡 ≤
𝑑 𝑥𝑛 ,𝑥𝑚  

0
 𝜓  𝜑 𝑡 𝑑𝑡

𝑠𝑘𝑛

1−𝑠𝑘
0

 → 0 as 𝑛,𝑚 → ∞.  

Thus  𝑥𝑛   is a dq 𝑏-Cauchy sequence in 𝑋. If 𝑋 is dq 𝑏-complete, there exist some 𝑡 ∈ 𝑋 such that 𝑥𝑛 → 𝑡 as 

𝑛 → ∞. Now we prove that 𝑓𝑡 = 𝑡. Suppose if not, there exists 𝑢 ∈ 𝑋 such that  

                                                      𝑑 𝑡, 𝑓𝑡 = 𝑢 > 0. 

Consider 

 𝜑 𝑡 𝑑𝑡 =  𝜑 𝑡 𝑑𝑡
𝑑(𝑡 ,𝑓𝑡)

0

𝑢

0
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                  =  𝜑 𝑡 𝑑𝑡
𝑠𝑑 𝑡 ,𝑥𝑛+2 +𝑠𝑑(𝑥𝑛+2 ,𝑓𝑡)

0
  

                  =  𝜑 𝑡 𝑑𝑡
𝑠𝑑 𝑡 ,𝑥𝑛+2 +𝑠𝑑(𝑔𝑥𝑛+1 ,𝑓𝑡 )

0
  

       𝜑 𝑡 𝑑𝑡
𝑢

0
 ≤ 𝜓  𝜑 𝑡 𝑑𝑡

𝑠𝑑 𝑡 ,𝑥𝑛+2 +𝑠 𝜆𝑑  𝑡 ,𝑥𝑛+1 +𝜇 
𝑑 𝑡 ,𝑓𝑡  𝑑(𝑥𝑛+1,𝑔𝑥𝑛+1)

1+𝑑(𝑡 ,𝑥𝑛+1)
 +𝛾 

𝑑 𝑥𝑛+1,𝑓𝑡  𝑑(𝑡 ,𝑔𝑥𝑛+1)

1+𝑑(𝑡 ,𝑥𝑛+1)
  

0
 . 

Letting 𝑛 → ∞, we get 𝑢 = 𝑑 𝑡, 𝑓𝑡 = 0, which is a contradiction so that 𝑢 = 0. 

Hence 𝑓𝑡 = 𝑡.  

Similarly, we can show that 𝑔𝑡 = 𝑡. 

To prove the uniqueness of common fixed point of 𝑓 and 𝑔. Suppose that 𝑣(≠ 𝑡) be another common fixed point 

of 𝑓 and 𝑔. Then 

 𝜑 𝑡 𝑑𝑡 =  𝜑 𝑡 𝑑𝑡
𝑑(𝑓𝑡 ,𝑔𝑣)

0

𝑑(𝑡 ,𝑣)

0
 ≤  𝜓   𝜑(𝑡)𝑑𝑡

𝑀(𝑡 ,𝑣)

0
 , 

where 

𝑀 𝑡, 𝑣 =  𝜆𝑑 𝑡, 𝑣 + 𝜇  
𝑑 𝑡 ,𝑓𝑡 𝑑(𝑣,𝑔𝑣)

1+𝑑(𝑡 ,𝑣)
 + 𝛾  

𝑑 𝑣,𝑓𝑡 𝑑(𝑡 ,𝑔𝑣)

1+𝑑(𝑡 ,𝑣)
   

             =  𝜆𝑑 𝑡, 𝑣 + 𝜇  
𝑑 𝑡 ,𝑡 𝑑(𝑣 ,𝑣)

1+𝑑(𝑡 ,𝑣)
 + 𝛾  

𝑑 𝑣,𝑡 𝑑(𝑡 ,𝑣)

1+𝑑(𝑡 ,𝑣)
   

             <  𝜆𝑑 𝑡, 𝑣 +  𝛾 𝑑(𝑡, 𝑣) = (𝜆 + 𝛾)𝑑(𝑡, 𝑣).  

That is   

 𝜑 𝑡 𝑑𝑡
𝑑(𝑡 ,𝑣)

0
≤  𝜓  𝜑(𝑡)𝑑𝑡

(𝜆+𝛾)𝑑(𝑡 ,𝑣)

0
 , which is a contradiction. So 𝑡 = 𝑣. 

Hence 𝑡 is unique common fixed point of 𝑓 and 𝑔. 

Remarks 2.1. By setting  𝑓 = 𝑔 in theorem 2.1, we get the following result. 

Theorem 2.2. Let  𝑋,𝑑  be a complete dislocated quasi b-metric space and let 𝑓:𝑋 → 𝑋 be a self mappings on 

𝑋. For 𝑠 ≥ 1 satisfying : 

(2.2.1)             𝜑(𝑡)𝑑𝑡
𝑑(𝑓𝑥 ,𝑓𝑦 )

0
≤ 𝜓   𝜑(𝑡)𝑑𝑡

𝑀(𝑥 ,𝑦)

0
  

where  

 𝑀 𝑥, 𝑦 = 𝜆𝑑 𝑥, 𝑦 + 𝜇  
𝑑 𝑥 ,𝑓𝑥 𝑑(𝑦 ,𝑓𝑦 )

1+𝑑(𝑥 ,𝑦)
 + 𝛾  

𝑑 𝑦 ,𝑓𝑥 𝑑(𝑥 ,𝑓𝑦 )

1+𝑑(𝑥 ,𝑦)
  and 𝜑 ∈ Φ, 𝜓 ∈ Ψ. 
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For all 𝑥, 𝑦 ∈ 𝑋 such that 1 + 𝑑(𝑥, 𝑦) ≠ 0 and 𝜆, 𝜇, 𝛾 are non-negative reals with 𝜆 + 𝜇 < 1. Then 𝑓 has a 

unique common fixed point. 
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