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ABSTRACT
In this paper, common fixed point theorems is proved in dislocated quasi b -metric spaces. Our result
generalized, modified, some existing result in the literature.
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I. INTRODUCTION AND PREILMANARIES

Frechet[5] introduced the notion of metric space in 1906. Hitzler and Seda[8] introduced the notion of dislocated
metric spaces. Zeyada et al.[3] generalized the result of Hitzler and Seda[8] and introduced the concept of
complete dislocated quasi metric space. In 1989, Bakhtin[4] introduced the b -metric space as a generalization
of metric space and investigated some fixed point theorem in such spaces. The concept of quasi b -metric spaces
given by Shah and Huassain[6] in 2012 and obtained some fixed point results. Chakkrid and Cholotis[2]
introduced the concept of dislocated quasi b -metric spaces. Recently Mujeeb Ur Rahman and Muhammad
Sarwar[7] define the notion of coupled coincidence fixed point and proved a coupled coincidence fixed point
theorem in dislocated quasi b-metric space. Aage and Golhare[1] proved common fixed point theorem in
dislocated quasi b-metric space.

In this paper, common fixed point theorem is proved in dislocated quasi b-metric space satisfying contractive
condition of integral type.

Definition 1.1[3&48] Let X be a non empty set and let d: X X X — [0,%0) be a function satisfying the following
conditions:

(dy) d(x,x) =0,

(d2) d(x,y)=d(y,x)=0 implies x =y,

(d3) d(x,y)=d(y,x) forall x,y € X,
(dp)d(x,y) <d(x,z) +d(z,y)forall x,y,z€ X.
If d satisfies conditions only (d,) and (d,4), then d is called a dislocated quasi metric on X.

If d satisfies conditions (d;), (d,) and (d4) then d is called a quasi metric on X. If d satisfies conditions (d,), (ds)
and (d,) then d is called a dislocated metric on X .If d satisfies all the conditions (d,), (d,), (ds) and (d4) then d is

called a metric on X.
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Definition 1.2[4]. Let X be a nonempty set and let s >1 be a given real number. A function d: X x X — [0, )

is called a b -metric if for all x,y,z € X the following conditions are satisfied:
(i) d(x,y) =0ifand only if x = y;
(i) d(x,y) = d(y,x) forall x,y €X;
(i) d(x,y) < s[d(x,z) + d(z,y)] forall x,y,z € X.
The pair (X, d) is called a b -metric space. The number s >1 is called the coefficient of (X, d).

Definition 1.3.[6] Let X be a non-empty set. Let d: X X X — [0, ) be a mapping and s >1 be a constant satisfy
the following conditions

(i) dCx,y) =0=d(y,x) iffx =y, forall x,y € X,

(i) d(x,y) < s[d(x,2z) + d(z,y)], forall x,y,z € X.

Then pair (X, d) is called quasi b -metric space.

Definition 1.4[2]. Let X be a non-empty set. Let the mapping d: X X X — [0, ) and constant s >1 satisfy
following conditions:
(i) dx,y) =0=d(y,x) >x =y, forall x,y € X,
(i) d(x,y) < s[d(x,z) + d(z,y)], forall x,y,z € X.
Then the pair (X, d) is called dislocated quasi b -metric space or in short dq b -metric space.
Example 1.1. Let X = R and suppose
d(x,y) = [2x — y|* + [2x + y|?
Then (X, d) is a dislocated quasi b-metric space with the coeficient s = 2. But it is not dislocated quasi-metric
space nor b-metric space.
Definition 1.5[2]. Let (X, d) be a dg b -metric space. A sequence {x, } in X is called to be dg b -converges to
x €Xif
,P_Ego d(x,,x)=0 =7}1_>r2 d(x,x,)
In this case x is called dg b -limit of {x,, } and is written as x,, — x.
Definition 1.6[2]. Let (X, d) be a dqg b -metric space. A sequence {x, } in X is called dq b -Cauchy sequence if

lim d(x,, x,)=0= lim d(x,,x,)
n,m-oo n,m-—oo

Definition 1.7[2]. A dq b -metric space (X, d) is said to be dq b -complete if every dg b -Cauchy sequence in it
is dg b -convergent in X.

Proposition 1.1[2]. Every subsequence of a dq b -convergent sequence in a dq b -metric space (X,d) isdq b -
convergent sequence.

Proposition 1.2[2]. Every subsequence of a dg b -Cauchy sequence in a dg b -metric space (X,d) isdq b -
Cauchy sequence.metric space.

Lemma 1.1. Limit of a convergent sequence in dislocated quasi b -metric space is unique.

Lemma 1.2. Let (X; d) be a dislocated quasi b -metric space and {x,,} be a sequence in dg b -metric space such
that
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d(xnvxn+1) <a d(xn—lixn)
forn=123,..,0<as <1,a€[0,1) and s is defined in dgq b -metric space. Then {x,, } is a Cauchy sequence
in X.

1. MAIN RESULT.
Theorem 2.1. Let (X, d) be a complete dislocated quasi b-metric space and let f, g: X — X be a self mappings

on X. For s > 1 satisfying :

@11 [T emde <y (f," p©at)

where

dGefr)d 0, Ao fr)d(x,
M(x,y):ld(x,y)+u{ xl’jrxd(x(;)g”}+y{ ylixd(x(;)g”}anm;)ed),lpe‘l’.

Forall x,y € X such that 1 + d(x,y) # 0 and A, y, y are non-negative reals with A + u < 1. Then f and g have

a unique common fixed point.
Proof. Let x, € X be an arbitrary point in X and define
Xp41 = fxn and Xp42 = GXn41s n=2012,...

Consider

fod(xnﬂ'xn”)(ﬂ(t)dt — deCan‘gme (p(t)dt

<y (" pnyar) (2.1.2)

where

d(xn:fxn)d(xn+1:gxn+l)} + {d (xn+1:fxn)d(xn:gxn+1)}

M(xy, Xp11) < Ad (2, X 41) + ,Ll{ 1+d GopXnt1) 14+d (Xp,Xn+1)

dCenxn+1)d (En+1.Xn+2) d(xn+1.Xn+1)d (Xn Xn +2)
< AdCxy, Xp41) +”{ 1+Til(xn,xn:1) +2}+y{ +11+d(:rc:l,xn+1) +2}

But 1+ d(xn' xn+1) > d(xn' xn+1)

d(xnXn+1) 1
1+d (xp,Xn+1) '

Thus, we have

M(xn'xn+l) < Ad(xntxn+1) + u d(xn+1'xn+2)

that is d(xn+l'xn+2) < Ad(xnl xn+1) +u d(xn+1'xn+2)

(1 = w)d (41, Xp42) < Ad(xp, X 41)
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d(xn+1:xn+2) < md(xn:xn+1)
d(Xns1%n42) < b A, K1), Where k= 2= < 1.
Hence by (2.1.2), we have
fod(xn+1rxn+2) @(t)dt < 1,[) (fok d(xnvxn+1) (p(t)dt)
If k < 1 then by inductivity, we obtain
dCn+1,0n42) e d (entn 1) k% d(xen—1,%n)
fo Xn+1Xn+2 (p(t)dtS ¢(f0 XnXn+1 (p(t)dt)S w(fo Xp—1,% (p(t)dt)

K d (xo 1)
<-<yp(fy P pwar).
So that for any m > n, we get

fod(xnnxm)(p(t)dt — fOSd(xnnxn+l)+Sd(xn+1'xm)(p(t)dt

= fOSd(xn,xn+1)+SZd(xn+1.xn+2)+52d(x"+z'xm) e(t)dt

sd (xp,x +s2d(x X )+s3d (x X +ots™ T (a0 -1,
— fo n n+1) n+1Xn+2 (n+2 n+3) (rm-1 m)(p(t)dt

sk™d(x0,x1)+s2k" T (x9,x1) 453k F2d (xg,x1 )+ 4™ T E™ "L d (xg,x1)
fo @(t)dt

<

k" an+1 Skn+2 m—nkm—ld ,
fo(s +s +s +oots ) (xoxl)(p(t)dt)

<y
<y <f015—7<p(t)dt).

Since sk, k < 1, we have

sk™

fod(xn-xm)(p(t)dt < l/) (fﬁ(p(t)dt) - 0asn,m— oo,

Thus {x, } is a dq b-Cauchy sequence in X. If X is dq b-complete, there exist some t € X such that x,, - t as

n — oo, Now we prove that ft = t. Suppose if not, there exists u € X such that
d(t, ft) =u>0.

Consider

u d(t,
[ o@adt = [ pn)dt
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— fOSd(f’xn+2)+Sd(xn+2'ft) (p(t)dt

_ Sd(trxn+2)+5d(gxn+1:ft)
- fg (p(t)dt

at.ft)d(xn+1.9%n+1) dCen41.ft)d(t.9%n+1)
sd (t,xn +2)+S[Ad (t,xn+1)+u{ }+y{ 1+d }]
(txn+1)
p(t)dt |.

f()u (P(t)dt < l,[) (fo 1+d(txn+1)

Letting n — oo, we get u = d(t, ft) = 0, which is a contradiction so that u = 0.
Hence ft = t.
Similarly, we can show that gt = t.

To prove the uniqueness of common fixed point of f and g. Suppose that v(+ t) be another commaon fixed point

of fand g. Then

fod(t,li)(p(t)dt — fod(ft,gv) (p(t)dt S '(l} (J.OM(t'v)(p(t)dt)q

where
_ d(t.ft)d(v,gv) d(v,ft)d(t.gv)
M(t,v) = Ad(t,v) +”{ 1+d (t,v) } { 1+d (t,v) }
_ d(t,t)d(v,v) d(v,t)d(t,v)
= Ad(t,v) +“{ 1+d(t,v) }+ { 1+d(t,v) }
< Ad(t,v) + yd(t,v) = (A +y)d(t,v).
That is

fod(t"’) pt)dt < P (fo(“”d(t’”) w(t)dt), which is a contradiction. So ¢t = v.
Hence t is unique common fixed point of f and g.

Remarks 2.1. By setting f = g in theorem 2.1, we get the following result.

Theorem 2.2. Let (X, d) be a complete dislocated quasi b-metric space and let f: X — X be a self mappings on

X. For s > 1 satisfying :

2.2.1) L pyar <y (f;' (p(t)dt)

where

d(x,fx)d(y, d(y.fx)d(x,
M(x,y) = Ad(x,y) +,u{ xlixd(xfify)} +y{ (le;xd(x(;)fy)} andp €, €W
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For all x,y € X such that 1 +d(x,y) # 0 and A, u, y are non-negative reals with A+ u < 1. Then f has a

unique common fixed point.
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