International Journal of Advance Research in Science and Engineering Vol. No.6, Issue No. 09, September 2017

www.ijarse.com

Common Fixed Point Theorems in Dislocated Quasi

b-Metric Spaces Satisfying Contractive Condition of

Integral Type

Antima Sindersiya

School of Studies in Mathematics, Vikram University, Ujjain (M. P.), (India)

ABSTRACT

In this paper, common fixed point theorems is proved in dislocated quasi b -metric spaces. Our result generalized, modified, some existing result in the literature.

Keywords. Dislocated quasi b -metric space, Cauchy sequence, Common fixed point.

I. INTRODUCTION AND PREILMANARIES

Frechet[5] introduced the notion of metric space in 1906. Hitzler and Seda[8] introduced the notion of dislocated metric spaces. Zeyada et al.[3] generalized the result of Hitzler and Seda[8] and introduced the concept of complete dislocated quasi metric space. In 1989, Bakhtin[4] introduced the b-metric space as a generalization of metric space and investigated some fixed point theorem in such spaces. The concept of quasi b-metric spaces given by Shah and Huassain[6] in 2012 and obtained some fixed point results. Chakkrid and Cholotis[2] introduced the concept of dislocated quasi b-metric spaces. Recently Mujeeb Ur Rahman and Muhammad Sarwar[7] define the notion of coupled coincidence fixed point and proved a coupled coincidence fixed point theorem in dislocated quasi b-metric space. Aage and Golhare[1] proved common fixed point theorem in dislocated quasi b-metric space.

In this paper, common fixed point theorem is proved in dislocated quasi *b*-metric space satisfying contractive condition of integral type.

Definition 1.1[3&8] Let *X* be a non empty set and let $d: X \times X \to [0, \infty)$ be a function satisfying the following conditions:

 $(\mathbf{d}_1) \, d(x \,, x) = 0,$

 $(d_2) d(x, y) = d(y, x) = 0 \text{ implies } x = y,$

 $(\mathbf{d}_3) \ d(x \ , y) = d(y \ , x) \ \text{for all} \ x \ , y \in X,$

 $(d_4)d(x, y) \le d(x, z) + d(z, y)$ for all $x, y, z \in X$.

If d satisfies conditions only (d_2) and (d_4) , then d is called a dislocated quasi metric on X.

If *d* satisfies conditions (d_1) , (d_2) and (d_4) then *d* is called a quasi metric on *X*. If *d* satisfies conditions (d_2) , (d_3) and (d_4) then *d* is called a dislocated metric on *X*. If *d* satisfies all the conditions (d_1) , (d_2) , (d_3) and (d_4) then *d* is called a metric on *X*.

International Journal of Advance Research in Science and Engineering

Vol. No.6, Issue No. 09, September 2017

www.ijarse.com

ISSN (P) 2319 - 8346 **Definition 1.2[4].** Let X be a nonempty set and let $s \ge 1$ be a given real number. A function $d: X \times X \to [0, \infty)$ is called a *b* -metric if for all $x, y, z \in X$ the following conditions are satisfied:

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x) for all $x, y \in X$;

(iii) $d(x, y) \leq s[d(x, z) + d(z, y)]$ for all $x, y, z \in X$.

The pair (X, d) is called a *b*-metric space. The number $s \ge 1$ is called the coefficient of (X, d).

Definition 1.3.[6] Let X be a non-empty set. Let $d: X \times X \to [0, \infty)$ be a mapping and $s \ge 1$ be a constant satisfy the following conditions

(i) d(x, y) = 0 = d(y, x) iff x = y, for all $x, y \in X$,

(ii)
$$d(x, y) \le s[d(x, z) + d(z, y)]$$
, for all $x, y, z \in X$.

Then pair (X, d) is called quasi b -metric space.

Definition 1.4[2]. Let X be a non-empty set. Let the mapping $d: X \times X \to [0, \infty)$ and constant $s \ge 1$ satisfy following conditions:

(i)
$$d(x, y) = 0 = d(y, x) \Rightarrow x = y$$
, for all $x, y \in X$,

(ii)
$$d(x, y) \leq s[d(x, z) + d(z, y)]$$
, for all $x, y, z \in X$.

Then the pair (X, d) is called dislocated quasi b -metric space or in short dq b -metric space.

Example 1.1. Let $X = \mathbb{R}$ and suppose

$$d(x, y) = |2x - y|^2 + |2x + y|^2$$

Then (X, d) is a dislocated quasi b-metric space with the coefficient s = 2. But it is not dislocated quasi-metric space nor *b*-metric space.

Definition 1.5[2]. Let (X, d) be a dq b -metric space. A sequence $\{x_n\}$ in X is called to be dq b -converges to $x \in X$ if

$$\lim_{n \to \infty} d(x_n, x) = 0 = \lim_{n \to \infty} d(x, x_n)$$

In this case x is called dq b -limit of $\{x_n\}$ and is written as $x_n \to x$.

Definition 1.6[2]. Let (X, d) be a dq b -metric space. A sequence $\{x_n\}$ in X is called dq b -Cauchy sequence if

$$\lim_{n,m\to\infty} d(x_n, x_m) = 0 = \lim_{n,m\to\infty} d(x_m, x_n)$$

Definition 1.7[2]. A dq b -metric space (X, d) is said to be dq b -complete if every dq b -Cauchy sequence in it is dq b -convergent in X.

Proposition 1.1[2]. Every subsequence of a dq b -convergent sequence in a dq b -metric space (X, d) is dq b convergent sequence.

Proposition 1.2[2]. Every subsequence of a dq b -Cauchy sequence in a dq b -metric space (X, d) is dq b -Cauchy sequence.metric space.

Lemma 1.1. Limit of a convergent sequence in dislocated quasi b -metric space is unique.

Lemma 1.2. Let (X; d) be a dislocated quasi b -metric space and $\{x_n\}$ be a sequence in dq b -metric space such that

International Journal of Advance Research in Science and Engineering Vol. No.6, Issue No. 09, September 2017

www.ijarse.com

IJARSE ISSN (O) 2319 - 8354 ISSN (P) 2319 - 8346

 $d(x_n, x_{n+1}) \le \alpha \, d(x_{n-1}, x_n)$

for $n = 1,2,3, ..., 0 \le \alpha s < 1, \alpha \in [0,1)$ and s is defined in dq b -metric space. Then $\{x_n\}$ is a Cauchy sequence in X.

II. MAIN RESULT.

Theorem 2.1. Let (X, d) be a complete dislocated quasi b-metric space and let $f, g: X \to X$ be a self mappings on *X*. For $s \ge 1$ satisfying :

(2.1.1)
$$\int_0^{d(fx,gy)} \varphi(t) dt \le \psi\left(\int_0^{M(x,y)} \varphi(t) dt\right)$$

where

$$M(x,y) = \lambda d(x,y) + \mu \left\{ \frac{d(x,fx)d(y,gy)}{1+d(x,y)} \right\} + \gamma \left\{ \frac{d(y,fx)d(x,gy)}{1+d(x,y)} \right\} \text{ and } \varphi \in \Phi, \psi \in \Psi.$$

For all $x, y \in X$ such that $1 + d(x, y) \neq 0$ and λ, μ, γ are non-negative reals with $\lambda + \mu < 1$. Then *f* and *g* have a unique common fixed point.

Proof. Let $x_0 \in X$ be an arbitrary point in X and define

$$x_{n+1} = f x_n$$
 and $x_{n+2} = g x_{n+1}$, $n = 0, 1, 2, ...$

Consider

$$\int_{0}^{d(x_{n+1},x_{n+2})} \varphi(t) dt = \int_{0}^{d(fx_{n},gx_{n+1})} \varphi(t) dt$$
$$\leq \psi \left(\int_{0}^{M(x_{n},x_{n+1})} \varphi(t) dt \right)$$
(2.1.2)

where

$$\begin{split} M(x_n, x_{n+1}) &\leq \lambda d(x_n, x_{n+1}) + \mu \left\{ \frac{d(x_n, fx_n)d(x_{n+1}, gx_{n+1})}{1 + d(x_n, x_{n+1})} \right\} + \gamma \left\{ \frac{d(x_{n+1}, fx_n)d(x_n, gx_{n+1})}{1 + d(x_n, x_{n+1})} \right\} \\ &\leq \lambda d(x_n, x_{n+1}) + \mu \left\{ \frac{d(x_n, x_{n+1})d(x_{n+1}, x_{n+2})}{1 + d(x_n, x_{n+1})} \right\} + \gamma \left\{ \frac{d(x_{n+1}, x_{n+1})d(x_n, x_{n+2})}{1 + d(x_n, x_{n+1})} \right\} \end{split}$$

But $1 + d(x_n, x_{n+1}) > d(x_n, x_{n+1})$

or
$$\frac{d(x_n, x_{n+1})}{1+d(x_n, x_{n+1})} < 1.$$

Thus, we have

$$M(x_n, x_{n+1}) < \lambda d(x_n, x_{n+1}) + \mu d(x_{n+1}, x_{n+2})$$

that is $d(x_{n+1}, x_{n+2}) < \lambda d(x_n, x_{n+1}) + \mu d(x_{n+1}, x_{n+2})$
 $(1 - \mu)d(x_{n+1}, x_{n+2}) < \lambda d(x_n, x_{n+1})$

International Journal of Advance Research in Science and Engineering Vol. No.6, Issue No. 09, September 2017

www.ijarse.com $d(x_{n+1}, x_{n+2}) < \frac{\lambda}{(1-\mu)} d(x_n, x_{n+1})$

 $d(x_{n+1}, x_{n+2}) < k \ d(x_n, x_{n+1})$, where $k = \frac{\lambda}{(1-\mu)} < 1$.

Hence by (2.1.2), we have

$$\int_0^{d(x_{n+1},x_{n+2})} \varphi(t)dt \leq \psi\left(\int_0^{k d(x_n,x_{n+1})} \varphi(t)dt\right)$$

If k < 1 then by inductivity, we obtain

$$\begin{split} \int_0^{d(x_{n+1},x_{n+2})} \varphi(t)dt &\leq \psi\left(\int_0^{k\,d(x_n,x_{n+1})} \varphi(t)dt\right) \leq \psi\left(\int_0^{k^2\,d(x_{n-1},x_n)} \varphi(t)dt\right) \\ &\leq \cdots \leq \psi\left(\int_0^{k^{n+1}\,d(x_0,x_1)} \varphi(t)dt\right). \end{split}$$

So that for any m > n, we get

$$\begin{split} \int_{0}^{d(x_{n},x_{m})} \varphi(t)dt &= \int_{0}^{sd(x_{n},x_{n+1})+sd(x_{n+1},x_{m})} \varphi(t)dt \\ &= \int_{0}^{sd(x_{n},x_{n+1})+s^{2}d(x_{n+1},x_{n+2})+s^{2}d(x_{n+2},x_{m})} \varphi(t)dt \\ &= \int_{0}^{sd(x_{n},x_{n+1})+s^{2}d(x_{n+1},x_{n+2})+s^{3}d(x_{n+2},x_{n+3})+\dots+s^{m-n}d(x_{m-1},x_{m})} \varphi(t)dt \\ &\leq \psi\left(\int_{0}^{sk^{n}d(x_{0},x_{1})+s^{2}k^{n+1}d(x_{0},x_{1})+s^{3}k^{n+2}d(x_{0},x_{1})+\dots+s^{m-n}k^{m-1}d(x_{0},x_{1})}{\varphi(t)dt}\right) \\ &\leq \psi\left(\int_{0}^{(sk^{n}+s^{2}k^{n+1}+s^{3}k^{n+2}+\dots+s^{m-n}k^{m-1})d(x_{0},x_{1})}{\varphi(t)dt}\right) \\ &\leq \psi\left(\int_{0}^{\frac{sk^{n}}{1-sk}}\varphi(t)dt\right). \end{split}$$

Since sk, k < 1, we have

$$\int_0^{d(x_n,x_m)} \varphi(t) dt \le \psi\left(\int_0^{\frac{sk^n}{1-sk}} \varphi(t) dt\right) \to 0 \text{ as } n, m \to \infty.$$

Thus $\{x_n\}$ is a dq *b*-Cauchy sequence in *X*. If *X* is dq *b*-complete, there exist some $t \in X$ such that $x_n \to t$ as $n \to \infty$. Now we prove that ft = t. Suppose if not, there exists $u \in X$ such that

$$d(t,ft)=u>0.$$

Consider

$$\int_0^u \varphi(t) dt = \int_0^{d(t,ft)} \varphi(t) dt$$

1038 | Page

IJARSE ISSN (O) 2319 - 8354 ISSN (P) 2319 - 8346

International Journal of Advance Research in Science and Engineering

Vol. No.6, Issue No. 09, September 2017

$$\begin{aligned} \text{www.ijarse.com} \\ &= \int_{0}^{sd(t,x_{n+2})+sd(x_{n+2},ft)} \varphi(t) dt \\ &= \int_{0}^{sd(t,x_{n+2})+sd(gx_{n+1},ft)} \varphi(t) dt \\ &\int_{0}^{sd(t,x_{n+2})+s\left[\lambda d(t,x_{n+1})+\mu\left\{\frac{d(t,ft)d(x_{n+1},gx_{n+1})}{1+d(t,x_{n+1})}\right\} + \gamma\left\{\frac{d(x_{n+1},ft)d(t,gx_{n+1})}{1+d(t,x_{n+1})}\right\}\right]}{\varphi(t) dt} \end{aligned}$$

Letting $n \to \infty$, we get u = d(t, ft) = 0, which is a contradiction so that u = 0.

Hence
$$ft = t$$
.

Similarly, we can show that gt = t.

To prove the uniqueness of common fixed point of *f* and *g*. Suppose that $v \neq t$ be another common fixed point of *f* and *g*. Then

$$\int_0^{d(t,v)} \varphi(t) dt = \int_0^{d(ft,gv)} \varphi(t) dt \le \psi\left(\int_0^{M(t,v)} \varphi(t) dt\right)$$

where

$$\begin{split} M(t,v) &= \lambda d(t,v) + \mu \left\{ \frac{d(t,ft)d(v,gv)}{1+d(t,v)} \right\} + \gamma \left\{ \frac{d(v,ft)d(t,gv)}{1+d(t,v)} \right\} \\ &= \lambda d(t,v) + \mu \left\{ \frac{d(t,t)d(v,v)}{1+d(t,v)} \right\} + \gamma \left\{ \frac{d(v,t)d(t,v)}{1+d(t,v)} \right\} \\ &< \lambda d(t,v) + \gamma d(t,v) = (\lambda + \gamma)d(t,v). \end{split}$$

That is

$$\int_0^{d(t,v)} \varphi(t) dt \le \psi \left(\int_0^{(\lambda+\gamma)d(t,v)} \varphi(t) dt \right), \text{ which is a contradiction. So } t = v.$$

Hence t is unique common fixed point of f and g.

Remarks 2.1. By setting f = g in theorem 2.1, we get the following result.

Theorem 2.2. Let (X, d) be a complete dislocated quasi b-metric space and let $f: X \to X$ be a self mappings on *X*. For $s \ge 1$ satisfying :

(2.2.1)
$$\int_0^{d(fx,fy)} \varphi(t) dt \le \psi\left(\int_0^{M(x,y)} \varphi(t) dt\right)$$

where

$$M(x,y) = \lambda d(x,y) + \mu \left\{ \frac{d(x,fx)d(y,fy)}{1+d(x,y)} \right\} + \gamma \left\{ \frac{d(y,fx)d(x,fy)}{1+d(x,y)} \right\} \text{ and } \varphi \in \Phi, \psi \in \Psi.$$

IJARSE

International Journal of Advance Research in Science and Engineering

Vol. No.6, Issue No. 09, September 2017

www.ijarse.com

IJARSE ISSN (O) 2319 - 8354 ISSN (P) 2319 - 8346 ISSN (P) 2319 - 8346

For all $x, y \in X$ such that $1 + d(x, y) \neq 0$ and λ , μ , γ are non-negative reals with $\lambda + \mu < 1$. Then f has a unique common fixed point.

REFERENCES

- [1] C. T. Aage and P. G. Golhare, On fixed point theorems in dislocated quasi b-metric spaces, *International Journal of Advances in Mathematics, Vol.2016, No. 1*, (2016), 55-70.
- [2] Chakkrid Klin-eam and Cholatis Suanoom, Dislocated quasi-b-metric spaces and fixed point theorems for cyclic contractions, *Fixed Point Theory and Applications*, (2015) 2015:74,DOI 10.1186/s13663-015-0325-2.
- [3] F. M. Zeyada, G. H. Hassan, and M. A. Ahmed, A generalization of a fixed point theorem due to Hitzler and Seda in dislocated quasi-metric spaces, *The Arabian Journal for Sci. Engg.*, *31* (*1A*), (2006), 111-114.
- [4] I. A. Bakhtin, The contraction principle in quasimetric spaces, Funct. Anal. 30 (1989), 26-37.
- [5] M. Fréchet, Sur quelques points du calcul fonctionnel, Rendic.Circ. Mat. Palermo, 22 (1906), 1–74.
- [6] M. H. Shah and N. Hussain, Nonlinear contractions in partially ordered quasi b-metric spaces, *Commun. Korean Math. Soc.*, 27 (1), (2012),117-128.
- [7] M. U. Rahman and M. Sarwar, coupled fixed point theorem in dislocated quasi b-metric spaces, *Communication in Nonlinear Analysis*, 2 (2016), 113-118.
- [8] P. Hitzler and A. K. Seda, Dislocated topologies, *Journal of Electrical Engineering 51(12/s)*, (2000),
 3-7.