International Journal of Advance Research in Science and Engineering Vol. No.6, Issue No. 09, September 2017 www.ijarse.com

Characterization of S2 Space Via Ideals

Nitakshi Goyal¹

Department of Mathematics, Punjabi University Patiala, Punjab (India).

ABSTRACT

In this paper we will give some characterizations of $S_2 \mod \mathfrak{T}$ spaces. Also Examples are given throughout the paper.

Keywords and phrases: $S_2 \mod \mathfrak{X} = \theta_1$ -closed.

2000 **MSC**: 54A05, 54D10, 54D30.

I. INTRODUCTION

In [2], Csàszàr, introduced S₁ and S₂ spaces and discussed some properties of these spaces and in [3], Janković gave various characterizations of S₁ and S₂ spaces using the θ -closure of a set. On the other hand separation axioms with respect to an ideal and various properties and characterizations were also discussed by many authors. Ideals in topological spaces were introduced by Kuratowski[4] and further studied by Vaidyanathaswamy[5]. Corresponding to an ideal a new topology $\tau^*(\mathfrak{T}, \tau)$ called the *-topology was given which is generally finer than the original topology having the kuratowski closure operator cl^{*}(A) = A U A^{*}(\mathfrak{T}, \tau)[6], where A^{*}(\mathfrak{T}, \tau) = {x \in X : U \cap A \notin \mathfrak{T} for every open subset U of x in X called a local function of A with respect to \mathfrak{T} and τ . We will write τ^* for $\tau^*(\mathfrak{T}, \tau)$.

The following section contains some definitions and results that will be used in our further sections.

Definition 1.1.[4]: Let (X, τ) be a topological space. An ideal \mathfrak{T} on X is a collection of non-empty subsets of X such that (a) $\phi \in \mathfrak{T}$ (b) $A \in \mathfrak{T}$ and $B \in \mathfrak{T}$ implies $A \cup B \in \mathfrak{T}$ (c) $B \in \mathfrak{T}$ and $A \subset B$ implies $A \in \mathfrak{T}$.

Definition 1.2.[2]: A topological space (X, τ) is said to be S₂ space if for every pair of distinct points x and y, whenever one of them has a open set not containing the other then there exist disjoint open subsets containing them.

Definition 1.3.: An ideal space (X, τ, \mathfrak{T}) is said to be $S_2 \mod \mathfrak{T}$ if for every pair of distinct points x and y in X, whenever x has a τ - open subset not containing y, there exist open nhds. U and V such that $x \in U, y \in V$ and U $\cap V \in \mathfrak{T}$.

Definition 1.4.[1]: Let (X,τ,\mathfrak{T}) be an ideal space. Then for any subset A of X, a point x is said to be in the θ_I closure of A if for every open subset U of x in X, $cl^*(U) \cap A \neq \phi$. The collection of all such points is denoted by $cl_{\theta_i}(A)$. Also A is said to be θ_I closed if $cl_{\theta_i}(A) = A$.

Definition 1.5.[3]: Let (X,τ) be a topological space and $x \in X$ be any element. Then

- a) Ker{x} = \bigcap {G : G $\in \tau(x)$ }, where $\tau(x)$ denotes the collection of all open subsets of x.
- b) $\langle x \rangle = cl\{x\} \cap ker\{x\}.$

International Journal of Advance Research in Science and Engineering Vol. No.6, Issue No. 09, September 2017 www.ijarse.com

II. RESULTS

Theorem 2.1.: Let (X,τ,\mathfrak{T}) be an ideal space. Then in each of the following cases X is $S_2 \mod \mathfrak{T}$.

- (i) $\langle x \rangle = c l_{\theta_i} \{x\}$ for every $x \in X$.
- (ii) $\langle x \rangle$ is θ_I closed for every $x \in X$.
- (iii) $cl_{\theta} \{x\} = \ker\{x\}$ for every $x \in X$.
- (iv) $cl{x}$ is θ_I closed for every $x \in X$.
- (v) Ker{x} is θ_I closed for every x \in X.
- (vi) If U be any open subset of x in X then $cl_{\theta_i}\{x\} \subset U$.

Proof: Let x,y be two distinct points of X such that y has a open set not containing x then $y \notin cl_{x}$ and so y $\notin e^{-1}$. Therefore by (i) $y \notin cl_{\theta_{l}}\{x\}$ and so y has a open set H such that $x \notin cl^{*}(H)$ which means $x \notin H \cup H^{*}$. Hence there exist open set G such that $x \in G$ and $G \cap H \in \mathfrak{T}$. Now (ii) implies that $cl_{\theta_{l}} < x > =<x>$ and so $y \notin cl_{\theta_{l}} < x >$. Further, similarly by (i), X is S₂ mod \mathfrak{T} , since $x \in <x>$. In (iii) $y \notin cl_{\chi}$ implies that y has a open set not containing x and so $x \notin ker\{y\}$. Therefore, by (iii) $x \notin cl_{\theta_{l}}\{y\}$. Hence X is S₂ mod \mathfrak{T} . Further in (iv) $y \notin cl_{\chi}$ implies that $y \notin cl_{\theta_{l}}(cl_{\chi})$ and so $y \notin cl_{\theta_{l}}\{x\}$, since $x \in cl_{\chi}$. Hence the result follows by (i). In (v) $y \notin cl_{\chi}$ implies that y has a open set not containing x and so $x \notin ker\{y\}$ and so $y \notin cl_{\theta_{l}}\{x\}$, since $x \in cl_{\eta_{l}}\{y\}$. Therefore, $x \notin cl_{\theta_{l}}(ker\{y\})$ and so $x \notin cl_{\theta_{l}}\{y\}$, since $y \in ker\{y\}$ and in (vi) $y \notin cl_{\chi}$ implies that $y \in x$ -cl{x} which means that X-cl{x} is the open set containing y and so $cl_{\theta_{l}}\{y\} \subset X$ -cl{x}. Therefore, $x \notin cl_{\theta_{l}}\{y\}$ and hence X is S₂ mod \mathfrak{T} .

The following Example 2.2 shows that the converse is not true.

Example 2.2. : Let X={a,b,c}, $\tau = \{\phi, \{a\}, \{b\}, \{a,b\}, X\}$ and $\mathfrak{T} = \{\phi, \{a\}, \{b\}, \{a,b\}\}$ and so $\tau^* = \wp(X)$. Then it can be seen easily that X is S₂ mod \mathfrak{T} . Further,(X, τ^*) is discrete topological space and hence T₂ space. Therefore, $cl_{\theta_1}\{x\} = cl\{x\}$ for every x \in X, since $cl^*(U)=U$ for every open subset U of X. Now for the subset A={a}, $cl_{\theta_1}\{a\} = cl\{a\} = \{a,c\}, \ker\{a\} = \{a\}$ and so $\langle a \rangle = \{a\}$. Therefore, (i) $\langle a \rangle \neq cl_{\theta_1}\{a\}$, (ii) $cl_{\theta_1} \langle a \rangle = cl_{\theta_1}\{a\} = \{a,c\} \neq \langle a \rangle$ and so $\langle a \rangle = is$ not θ_1 closed, (iii) $cl_{\theta_1}\{a\} = \{a,c\} \neq \{a\} = \{a,c\} \neq \{a\}$. (iv) $cl_{\theta_1}(\ker\{a\}) = cl_{\theta_1}\{a\} = \{a,c\} \neq \{a\}$ and hence $\ker\{a\}$ is not θ_1 closed and (v) a $\epsilon\{a\}$ is open set but $cl_{\theta_1}\{a\} = \{a,c\} \neq \{a\}$.

Theorem 2.3.: Let (X,τ,\mathfrak{T}) be $S_2 \mod \mathfrak{T}$ space and X is S_1 . Then $x \in cl_{\theta_1} \{y\}$ if and only if $y \in cl_{\theta_1} \{x\}$.

Proof: Let $x \in cl_{\theta_l} \{y\}$ then to prove $y \in cl_{\theta_l} \{x\}$. Let if possible, $y \notin cl_{\theta_l} \{x\}$ then by the proof of part (i) of Theorem 2.1 there exist open set G and H such that $x \in G$, $y \in H$ and $G \cap H \in \mathfrak{X}$. Also $x \notin H$ implies that y has a open set not containing x and so X is S_1 implies that x has a open set W not containing y. Further $U=G \cap W$ is the open set containing x but not y. Also $U \cap V \in \mathfrak{X}$ implies that $y \notin cl^*(U)$ and so $x \notin cl_{\theta_l} \{y\}$. Hence $x \in C$

 $cl_{\theta_{t}}\{y\}$ if and only if $y \in cl_{\theta_{t}}\{x\}$.

Remark 2.4.: In the above Theorem 2.3 if the space is not S_1 then the result need not be true. In the above Example 2.2 (X,τ,\mathfrak{T}) is $S_2 \mod \mathfrak{T}$ but not S_1 , since a has a open set {a} not containing c but X is the only open subset containing c. And $c \in cl_{\rho}$ {a} but a $\notin cl_{\rho}$ {c}.

Even though we have seen that in Example 2.2 that if the space is $S_2 \mod \mathfrak{T}$ then the converse of Theorem 2.1 need not be true. But the following Theorem 2.5 shows that if we assume S_1 space then the converse of Theorem 2.1 also holds.

Theorem 2.5.: Let (X, τ, \mathfrak{T}) be $S_2 \mod \mathfrak{T}$ space and X is S_1 . Then each of the following is true.

International Journal of Advance Research in Science and Engineering Vol. No.6, Issue No. 09, September 2017 www.ijarse.com

- (i) $\langle \mathbf{x} \rangle = c l_{\theta_i} \{ \mathbf{x} \}$ for every $\mathbf{x} \in \mathbf{X}$.
- (ii) $\langle x \rangle$ is θ_I closed for every $x \in X$.
- (iii) $Cl_{\theta_{I}} \{x\} = \ker\{x\}$ for every $x \in X$.
- (iv) $cl\{x\}$ is θ_I closed for every $x \in X$.
- (v) Ker $\{x\}$ is θ_I closed for every $x \in X$.
- (vi) If U be any open subset of x in X then $cl_{\theta_i} \{x\} \subset U$.

Proof: (i) Let $x \in X$ be any element. Then $\langle x \rangle = cl\{x\} \cap ker\{x\} \subset cl\{x\} \subset cl_{\theta_t}\{x\}$. Conversely, let $y \notin \langle x \rangle$ then

either $y \notin cl\{x\}$ or $y \notin ker\{x\}$. Now $y \notin cl\{x\}$ and X is $S_2 \mod \mathfrak{X}$ implies that there exist open subset W such that $y \in W$ but $x \notin W$ and $U \cap W \in \mathfrak{X}$ where U and W are open sets containing x and y respectively and so $U \cap G \in \mathfrak{X}$ where $G=V \cap W$ and hence (i) holds. Also in case of $y \notin ker\{x\}$, X is S_1 implies that $x \notin ker\{y\}$ which means that y has a open set not containing x and so $y \notin cl\{x\}$. Hence (i) holds. The proof of (ii) and (iii) follows from(i) and hence is omitted. (iv) Let $x \in X$ be any element then we will prove that $cl\{x\}$ is θ_1 closed. As $cl\{x\} \subset cl_{\theta_1}(cl\{x\})$, so we will prove that $cl_{\theta_1}(cl\{x\}) \subset cl\{x\}$. Let $y \notin cl\{x\}$ and $z \in H$ implies that $x \in H$, which is not possible. Also $z \notin H^*$, since $z \in cl\{x\}$ and X is S_1 implies that $x \in cl\{z\}$ and so $z \in G$. But $G \cap H \in \mathfrak{T}$ implies that $z \notin H^*$. Hence $cl^*(H) \cap cl\{x\} = \phi$ implies that $y \notin cl_{\theta_1}(cl\{x\})$. The proof of (v) and (vi) is also obvious and hence is omitted.

References

[1] A. Al-omari and T.Noiri, On $\theta_{(L,J)}$ -continuous functions, Rend. Istit. Mat. Univ. Trieste, 44(2012), 399-411.

- [2] A. Csàszàr, General Topology, A. Hilger Ltd., Bristol, 1978.
- [3] D. Janković, On some Separation axioms and θ-closure, Mat. Vesnik, 32(4) 1980, 439-449.
- [4] K. Kuratowski, Topology, volume I, Academic Press, New York, 1966.
- [5] R. Vaidyanathaswamy, The localisation Theory in Set Topology, Proc. Indian Acad. Sci., 20(1945), 51-61.
- [6] -----, Set Topology, Chelsea Publishing Company, New York, 1946.