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ABSTRACT 

In this paper, natural heat convection of a third grade fluid flow between two vertical parallel infinite flat plates 

is considered. The governing flow problem of the conservation laws are reduced to a set of coupled differential 

equations by similarity transformations. Homotopy analysis Method (HAM) is used to solve the present flow 

problem. The results comprise good agreement between HAM and earlier literature work. HAM gives rapid 

convergent series solution which shows that this method is efficient, accurate and has advantages over other 

methods. Further, the effects of different physical parameters such as Prandlt number, Eckert number and 

viscoelastic parameter on the flow are discussed in detail. 
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I. INTRODUCTION 

The study of flows of non-Newtonian fluids attracts much attention in recent years, due to an increasing 

application in science and industries. The fundamental analysis of non-Newtonian fluids in a boundary layer 

continuously stretching sheet or an extended surface is of great importance, and it is an essential part in the 

study of emerging field of fluid dynamics. For examples melts, muds, pastes, printing ink, emulsions, cleansers, 

sugar solution, paints, tomato glue demonstrate the non-Newtonian properties of fluids. Few models of non-

Newtonian fluids have been investigated in the literature through the differential, integral, and rate type 

categories. The majority of non-Newtonian fluid models are concerned with simple models like the power law 

and grade two or three. 

The fluids involved are not simply Newtonian in most of realistic models, and a single model cannot capture the 

complex rheological properties of non-Newtonian fluids. The different types of non-Newtonian fluids have been 

studied in different mathematical approaches. For the flow of a particular class of such fluids between vertically 

standing flat plates natural heat convection has been examined by Bruce and Na [1]. Rajagopal and Na 

discussed a comprehensive thermodynamic investigation of constitutive relations for few classes of non-

Newtonian fluids [2]; one of them is known as third grade fluid and many specialists have utilized this 

constitutive relation to demonstrate the flow of non-Newtonian fluids [3 - 5].  

Many scientists and engineers have to deal with natural heat convection which plays a major role in overall 

behavior of the flow. In many circumstances it plays a significant role that disregarding it can leads us to 

extremely poor and unrealistic flow model. In modern days industrial advancement has really strengthened the 

ease level of human life and a way better expectation for everyday comforts has been accomplished; however 

further advancement is constantly invited and extent of further change is dependably there. In comparative way 
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regardless of the immense achievement in demonstrating flow models with heat convection, still there is a lot of 

requirement for new ideas and strategies.  

In most of the practical situations the equations describing the flow are highly nonlinear and are not amenable 

for obtaining analytical solutions. In such situations, the attempts have to develop a semi-numerical / semi-

analytical method for the solutions of these problems. The perturbation methods are widely used by the 

scientists and engineers to obtain the solutions for nonlinear problems. For this purpose many semi-analytical 

and semi-numerical schemes have been developed to approximate the solution in better way [6 - 8], one of such 

method is Homotopy Analysis Method (HAM) which is very effective and easy to apply. The HAM was 

developed by Liao [9] and further modified it in [10] to introduce a non-zero auxiliary parameter which is 

known as convergence-control parameter  , which allows us to adjust the convergence region and rate of 

approximations of required solution. 

In this paper natural heat convection for the flow of a third grade fluid through vertical parallel plates is 

considered. HAM solution is obtained for the governing problem and compared with the earlier literature work. 

The results are presented and compared with the help of tables and graphs. The Behaviour of flow for physical 

parameters is discussed in detail. 

 

II. MATHEMATICAL FORMULATION 

In this problem we consider the natural convection of a non-Newtonian fluid, namely the Rivilin-Ericksen of 

third grade fluid between two infinite parallel vertical flat plates. The stress in such a fluid is related to the 

motion is given by [11]  

    1
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where p  is pressure,   is the co-efficient of viscosity, 2121 ,,,  and 3  are material constants and 

21 , AA and 3A  are kinematical tensors and are given by [12] 

 TvgradvgradA 1                                                (2.2) 

and      
T

nnnn LALAA
dt

d
A 111   , ,.....2,1n                       (2.3) 

where 
dt

d
 denotes material derivatives and vgradL  . 

Consider an incompressible steady flow of a third grade fluid between two vertical flat plates at a 

distance ‘2h’ apart. The plates are kept at hx   and hx   at constant temperature 0T  and 1T  

respectively, where 10 TT  . This difference in temperature causes the fluid near the left wall at hx   to 

raise and the fluid near the right wall at hx   to fall. We seek velocity and temperature fields of the form 

)(),( xTTxvV                                            (2.4) 

In the absence of body forces, the physical problem of governing momentum and energy equations becomes 

[12] 



 

2091 | P a g e  
 

  06 002

22

32

2









 gTT

dx

vd

dx

dv

dx

vd
                                     (2.5) 

02

4

3

2

2

2




















dx

dv

dx

dv

dx

Td
K                                           (2.6) 

subjected to boundary conditions 

10 )(,)(
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                                                     (2.7) 

Define the non-dimensional parameters as [12] 
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Use the above dimensionless parameters and drop the asterisks, then eqns. (2.5) to (2.7) becomes 
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also boundary conditions becomes 
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where 
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   is viscoelastic 

parameter and pc  is the specific heat of fluid. 

 

III. HOMOTOPY ANALYSIS METHOD 

We seek HAM solution for the Eqn. (2.8-2.9) subjected to the boundary conditions (2.10). We choose the initial 

guesses which satisfies the boundary conditions automatically and auxiliary linear operators for the functions v  

and T as 

,
2

)(,0)( 00

x
xTxv                                            (3.11) 

and                                            

TTLvvL  ][,][  .                                            (3.12) 

Here the above linear operator satisfies 

  ,0][,0][ 4321  CxCLCxCL Tv                               (3.13) 
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where 4,3,2,1: iCi  are arbitrary constants to be determined later. 

 

3.1 Zeroth-order Deformation Problem 

If ]1,0[q  then the zeroth order deformation problem can be constructed as 
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The boundary conditions becomes 
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where ]1,0[q  is an embedding parameter. Here 
v and 

T  are the non-zero auxiliary parameters. Further 

  is the non-linear differential operator and is given by 
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For 0q  and 1q , Eqn. (3.14) have the solutions  
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As q vary from 0 to 1, ),(),,( qxTqxv
 
also vary from the initial guesses )(),( 00 xTxv  to the final 

solutions )(),( xTxv . With the help of Taylor's theorem, Eqn. (3.17) can be written as 
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(3.18) depends on the auxiliary parameters v  and 
T . In order to select the values of 

v  and 
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in such a 

way that the series (3.18) is convergent at 1q , we have 
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3.2 mth-order Deformation Problems 

Differentiating the zeroth order deformation problem (3.14) ''m  times with respect to the embedding parameter 

q  and then dividing by !m , finally setting 0q . The resulting mth-order deformation problem becomes 
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The homogeneous boundary conditions are 
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We use Mathematica to solve the linear system of equations (3.20) with the appropriate homogeneous boundary 

conditions (3.21) up to first few orders of approximations for the series v and T 
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3.3 Convergence of HAM 

The analytic expressions of v and T in terms of series are given in Eqn. (3.19) contains the auxiliary parameters 

and the convergence of the series strictly depends upon the parameters 
v  and 

T  which are called as 

convergence control parameters. These parameters play a major role in predicting the convergence region and 

rate of approximations. For this purpose, we have drawn the line segment of the  curves parallel to x - axis. 
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Fig. 1 and 2 shows the   curves for the series )(xv  and )(xT for the 10
th

 order of approximations. It is clearly 

indicates that the admissible ranges of 
v  and 

T  
are 25.05.1  v  and 

2.07.1  T respectively for 1,1Pr,5.0  Ec . Our calculation shows that the two series 

converges in the whole region of x when 1 Tv  , other than this  values the results may diverge or 

converge slowly.  

Fig. 1:    curves for the series )5.0(v  for 1,1Pr,5.0  Ec . 

 

Fig. 2:    curve for the series )5.0(T  for 1,1Pr,5.0  Ec . 
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IV.  RESULTS AND DISCUSSION 

Natural heat convection flow of a third grade fluid between two vertically placed parallel infinite plates is 

considered. The coupled differential eqns. (2.9-2.10) along with boundary conditions (2.10) of the governing 

problem is solved by HAM. The effects of Eckert number Ec, Prandtl number Pr and viscoelastic parameter   

on the flow are shown graphically in Figs. 3-7. 

 

Fig. 3: Effects of on non-dimensional velocity. 

Fig. 4: Effects of Pr on non-dimensional velocity. 
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Fig. 3 demonstrates the impacts of viscoelastic parameter
 
  on the velocity v of the fluid. The velocity 

decreases with the increase in viscoelastic parameter. The behavior of velocity and temperature profiles are 

shown in Figs. 4 and 5 respectively for increasing values of Pr. Both velocity and temperature are increasing 

functions in this case. For increasing values of Ec the similar effects can be observed in Figs. 6 and 7. 

 

Fig. 5: Effects of Pr on non-dimensional temperature. 

 

Fig. 6: Effects of Ec on non-dimensional velocity. 
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Fig. 7: Effects of Ec on non-dimensional temperature. 

Table.1 describes the numerical and semi-analytical solutions to the velocity profile for 0.5, Pr 1, Ec 1 

and Table.2 shows the temperature distribution results for 0.5, Pr 1, Ec 1. From the Tables. 1 and 2, the 

Comparison is made with the earlier literature work [13] and an excellent agreement is seen between both the 

solutions which approve the effectiveness of HAM. 

 

Table 1: Comparison of HAM and numerical solution for 0.5, Pr 1, Ec 1. 

x V(x) 

VPM HAM Numerical 

-1 0 0 0 

-0.9 0.01412053 0.0137045 0.0141168 

-0.8 0.02392391 0.0231506 0.0239193 

-0.7 0.02979535 0.0287785 0.0297907 

-0.6 0.03217724 0.0310484 0.0321727 

-0.5 0.03154945 0.0304321 0.031545 

-0.4 0.02841114 0.0274075 0.0284069 

-0.3 0.02326744 0.0224546 0.0232633 

-0.2 0.01662161 0.0160529 0.0166176 

-0.1 0.00897182 0.0086809 0.008968 

0 0.00081131 0.000815424 0.0008076 

0.1 -0.0073694 -0.00706752 -0.007373 
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0.2 -0.0150791 -0.0144919 -0.015082 

0.3 -0.021823 -0.0209809 -0.021826 

0.4 -0.0271006 -0.0260558 -0.027104 

0.5 -0.0304052 -0.0292364 -0.030408 

0.6 -0.0312274 -0.0300413 -0.03123 

0.7 -0.0290632 -0.0279904 -0.029066 

0.8 -0.023427 -0.0226077 -0.023429 

0.9 -0.0138699 -0.0134273 -0.013871 

1 0 0 0 

 

Table 2: Comparison of HAM and numerical solution for 0.5, Pr 1, Ec 1. 

x T(x) 

VPM HAM Numerical 

-1 0.5 0.5 0.5 

-0.9 0.45044049 0.450701 0.4504418 

-0.8 0.4007343 0.401203 0.4007359 

-0.7 0.35096454 0.351548 0.350966 

-0.6 0.30117607 0.301773 0.3011774 

-0.5 0.2513854 0.25191 0.2513865 

-0.4 0.20158997 0.201985 0.2015909 

-0.3 0.15177631 0.152021 0.1517771 

-0.2 0.1019269 0.102034 0.1019275 

-0.1 0.05202535 0.0520369 0.0520258 

0 0.00206022 0.00203697 0.0020605 

0.1 -0.0479728 -0.0479633 -0.047973 

0.2 -0.09807 -0.0979665 -0.09807 

0.3 -0.1482206 -0.14798 -0.148221 

0.4 -0.1984082 -0.198016 -0.198409 

0.5 -0.2486154 -0.248091 -0.248616 

0.6 -0.2988279 -0.298227 -0.298829 

0.7 -0.3490424 -0.348453 -0.349043 

0.8 -0.399274 -0.398798 -0.399275 

0.9 -0.4495659 -0.4493 -0.449566 

1 -0.5 -0.5 -0.5 
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V.  CONCLUSION 

The non-Newtonian fluid flow between two vertically placed infinite parallel plates is considered. Natural heat 

convection for the flow is investigated and HAM is used to solve the coupled equations. The HAM results are 

compared with previous results which show good agreement. The convergence of the HAM is given. The effects 

of physical parameters on the flow are presented in table and graphs, and are discussed in detail. 
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