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ABSTRACT  

This paper studies the oscillatory flow and heat transfer of two viscous immiscible fluids between two parallel 

plates. The partial differential equations governing the flow and heat transfer are solved analytically using two-

term harmonic and non-harmonic functions in both fluid regions of the channel. Effects of physical parameters 

such as height ratio, viscosity ratio, conductivity ratio, Prandtl number, Eckert number, periodic frequency 

parameter and pressure on the velocity and temperature distributions are given and illustrated graphically.  
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Nomenclature   

A  real positive constant 

P
C  specific heat at constant pressure 

g


 gravitational acceleration 

K  thermal conductivity 

P  pressure 

Ec Eckert number 

Pr  Prandtl number 

T  temperature 

wT  wall temperature 

t  time 

u  velocity components of velocity along   

            the plate. 

0U  average velocity 

    

  

Greek letters 

density luidf    

fluidofitycosvis

parameterperiodicofntcoeffiecie  

parameterfrequency  

parameterfrequencyperiodict  

  kinematic viscosity 

  nondimensional tempeaure 

 

Subscripts 

1,2 quantities for region-I and region-II 

respectively. 

 

 

I INTRODUCTION 

Problems involving immiscible multi-phase flow and heat transfer and multi-component mass transfer arise in a 

number of scientific and engineering disciplines. Important applications include petroleum industry, geophysics 

and plasma physics. In modeling such problems, the presence of a second immiscible fluid phase adds a number 
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of complexities as to the nature of interacting transport phenomena and interface conditions between the phases. 

In general, multi-phase flows are driven by gravitational and viscous forces. There has been some theoretical 

and experimental work on stratified laminar flow of two immiscible fluids in a horizontal pipe (Packham & 

Shail 1971, Aliareza and Sahai 1990, and Malashetty and Leela 1992). Loharsbi and Sahai (1988) studied two-

phase MHD flow and heat transfer in a parallel plate channel, with one of the fluids being electrically 

conducting. Two-phase MHD flow and heat transfer in an inclined channel was investigated by Malashetty and 

Umavathi (1997). Later on convective magnetohydrodynamic two-fluid flow and convective flow and heat 

transfer in composite porous medium was analysed by Malashetty et al (2001 a, b). Fully developed flow and 

heat transfer in horizontal channel consisting of an electrically conducting fluid layer sandwiched between two 

fluids layers is studied analytically by Umavathi et al. (2004). 

All the above studies pertain to steady flow. However, most problems of practical interest is unsteady. Umavathi 

et al. (2005, 2009) have presented analytical solutions for unsteady/oscillatory two-fluid flow and heat transfer 

in a horizontal channel. Keeping in view the wide area of practical importance of multi-fluid flows as mentioned 

above, it is the objective of the present study to investigate oscillatory flow and heat transfer of two–fluid model 

in a horizontal channel.  

 

II MATHEMATICAL FORMULATION 

T
w2

T
w1

Figure.1 Physical configration

Region-I

Region-II
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 -h
1

 h
2
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The physical configuration (Fig.1) consists of two infinitely long, parallel plates maintained at different constant 

temperatures, extending in the Z and X directions. The region 1 0h y    (Region-I) is filled with a viscous 

fluid having density 1 , dynamic viscosity 1 , specific heat constant 1pC  and thermal conductivity 1K . The 

region 20 y h   (Region-II) is filled with a different viscous fluid having density 2 , dynamic viscosity 2 , 

specific heat constant 2pC  and thermal conductivity 2K . 

It is assumed that the flow is unsteady, fully developed and that all fluid properties are constants. The flow is 

driven by temperature gradients 1 2w wT T  and also by pressure gradient 1p

x

 
 
 

in region-I, by a pressure 

gradient 2p

x

 
 
 

 in region-II.  
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Under these assumptions and taking 1 2p p pC C C  , the governing equations of motion  (Loharsbi and 

Sahai, 1988) are given by: 

Region-I 

  

2

1 1 1
1 1 2

u u p

t y x
 
  

 
  

   (2.1)                                

  

22

1 1 1
1 1 12

T T u
Cp K

t y y
 

   
   

   
                   (2.2)                                    

Region-II 

  

2

2 2 2
2 2 2

u u p

t y x
 

  
 

  
         (2.3)                                                         

  

22

2 2 2
2 2 22

T T u
Cp K

t y y
 

   
   

   
  (2.4)   

where u is the x-component of fluid velocity and T is the fluid temperature. The subscripts 1 and 2 correspond to 

region-I and region-II, respectively. The boundary conditions on velocity are the no-slip boundary condition, 

which require that the   x-component of velocity must vanish at the wall. The boundary conditions on 

temperature are isothermal conditions. We also assume continuity of velocity, shear stress, temperature and heat 

flux at the interface between the two fluid layers at       y = 0. 

The hydrodynamic and thermal boundary and interface conditions for the two fluids can then be written as  

  

 

 

   

1 1

2 2

1 2

1 2
1 2

0

0

0 0

0

u h

u h

u u

u u
at y

y y
 

 





 
 

 

         (2.5)                              

  

 

 

   

1 1 1

2 2 2

1 2

1 2
1 2

0 0

0

w

w

T h T

T h T

T T

T T
K K at y

y y

 





 
 

 

  (2.6)  

By using the following non-dimensional quantities:  

  

 

2 2
* * *1 1

0

1 1 0

2
12

1 2 1 1 2

i
i i i i i i

pW o

W W p w w

Ph h
u U u y h y t t P

U x

CT T U
Pr Ec

T T K C T T

 




 
     

 


  

 

 (2.7)  

and for simplicity dropping the asterisks, equations (3.2.2) to (3.2.3) become 
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Region-I  

  

2

1 1
12

u u
P

t y

 
 

 
   (2.8)  

  

22

1 1 1

2

1

Pr

u
Ec

t y y

     
   

   
  (2.9)  

Region-II  

  

2
22 2

22

u u
mn h n P

t y

 
 

 
     (2.10)  

  

22
22 2 2

2

2 ubh n
Ec mh n

t Pr y y

     
   

   
  (2.11)  

2 1 1 2

1 2 2 1

, , ,
h K

m n h b
h K

 

 
    ,  are  the ratios of viscosity, density , height and conductivity. 

The hydrodynamic and thermal boundary and interface conditions for both fluids in non-dimensional form 

become 

  

 

 

   

1

2

1 2

1 2

1 0

1 0

0 0

0

u

u

u u

u u
h m at y

y y

 





 
 

 

  (2.12) 

  

 

 

   

1

2

1 2

1 2

1 0

1 0

0 0

0hb at y
y y





 

 

 





 
 

 

  (2.13) 

III SOLUTIONS 

The governing momentum equations (2.5) and (2.6) are solved subject to the boundary and interface conditions 

(2.7) for the velocity distributions in both regions. These equations are partial differential equations that cannot 

be solved in closed form. However, it can be reduced to ordinary differential equations by assuming 

       0 1, i t

i i iu y t u y e u y    (3.1)  

       0 1, i t

i i iy t y e y      (3.2)             

       0 1, i t

i i iP y t P y e P y                2,1ifor   (3.3)  
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By substitution of equation (3.1) to (3.3) into equations (2.8) to (2.13), one obtains the following pairs of 

equations: 

 

Region-I 

Non-periodic coefficients 

  

2

10
102

d u
P

dy
   (3.4) 

  

22

10 10

2
Pr 0

d du
Ec

dy dy

  
  

 
  (3.5) 

Periodic coefficients 

  

2

11
11 112

d u
i u P

dy
    (3.6)   

  

2

1011 11
112

Pr 2 0
dud du

i u Ec
dy dy dy


     (3.7)   

Region -II  

Non-periodic coefficients 

  

2

20 20

2 2

d u P

dy mh
   (3.8)  

  

22

20 20

2

Pr
0

d duEc m

dy b dy

  
  

 
  (3.9)  

Periodic coefficients 

  

2

21 21
212 2 2

d u P
i u

dy mn h mh


    (3.10)  

  

2

2021 21
212 2

Pr 2Pr
0

dud duEc
i

dy bnh b dy dy

 


 
   

 
  (3.11)  

The corresponding boundary and interface conditions become as follows: 

Non-periodic coefficients 

  

 

 

   

10

20

10 20

10 20

1 0

1 0

0 0

0

u

u

u u

du du
m h at y

dy dy

 





 

  (3.12)  

Periodic coefficients 
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 

 

   

11

21

11 21

11 21

1 0

1 0

0 0

0

u

u

u u

du du
m h at y

dy dy

 





 

  (3.13)  

Equations (3.4) to (3.11) along with boundary and interface conditions (3.12) to (3.15) represent a system of 

ordinary differential equations and conditions that can be solved in closed form. Since the solutions can be 

obtained directly, the expressions are not presented. The results are depicted graphically and are discussed in the 

next section. 

 

IV RESULTS AND DISCUSSION 

In this section representative flow results for oscillatory flow and heat transfer of two immiscible fluids through 

a horizontal channel are presented and discussed for various parametric conditions. The flow governing 

equations cannot be solved exactly. However the closed form solutions were found considering the cosine 

function for frequency parameter on velocity and pressure is assumed. The solutions are depicted graphically in 

Figs. 2 to 12 for different values of height ratio, viscosity ratio, periodic frequency parameter and pressure on 

the flow and thermal conductivity ratio, Prandtl number and Eckert number on temperature field. The 

parameters are fixed as 1 except the varying one, Pr=0.7, Ec=0.5 and t =45
0
. 

Figures 2 and 3 show that velocity profiles are suppressed for large values of height and viscosity ratios. The 

flow profile is large in   region-II compare to region-I for values of viscosity and height ratios less than one. The 

flow profile is large in region-I compare to region-II for values of height and viscosity ratio greater than one. 

The flow profiles almost remain the same in both the regions for equal values of height and viscosity ratios and 

similar effects on the temperature field as shown in Figs. 6 and 7. 

Figure 4 shows the effect of periodic frequency parameter t on velocity as t increases the flow is also 

increases, since the solutions are approximated by cosine function. The effect of periodic frequency parameter 

t on temperature field is shown in Fig. 8. As the t increases temperature profiles is also increases in both 

the regions. Fig. 10 depicts the effect of thermal conductivity ratio, as the ratio increases the magnitude of 

suppression is large in region-I compared to region-II. This is obvious because the upper plate is maintained at a 

low temperature compared to region-I. 

Figures 11 and 12 display the effect of Prandtl number and Eckert number respectively on temperature filed. It 

is seen that temperature is increases with increase in Prandtl number as well as Eckert number. Since the values 

of Prandtl number are very small for liquid and metals and it is very high for highly viscous fluid.  

Keeping in view the physical model of the flow of two immiscible fluids such as water and oil in petroleum 

industries, a study is made to know the effect of pressure on the flow as shown Fig.5. We have considered 

different values of pressure for two fluids separately. For positive values of pressure on upper and lower fluids, 

the flow is promoting. For positive values of pressure in the lower region and negative values of pressure in the 

upper region display the effect of maximum velocity in region-I. On the other hand if we take negative values of 
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pressure in lower region and positive values of pressure in the upper region also show the maximum velocity in 

region-I itself but the flow direction is opposite. Assigning negative values of pressure also show the similar 

effect to that for positive values of pressure except in opposite direction. It is observed that controlling the 

pressure parameter one can also control the direction of flow, which has immense applications in flow reversal 

problems. 

Thus one can conclude that the flow can be controlled by considering different fluids having different 

viscosities, heights, periodic frequency and applying different pressures. 
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