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ABSTRACT 

The presence of contaminating dust particles in fluids can occur naturally. These problems associated with the 

flow characteristics and their properties are of fundamental interest in the field of fluid mechanics, the effect of 

finite volume fraction of suspended particulate matter on axially symmetrical jet mixing of incompressible dusty 

fluid has been considered. The presence of dust particles in a homogeneous fluid makes the dynamical study of 

flow problems quite complicated. Here we are assuming the velocity and temperature in the jet to differ only 

slightly from that of surrounding stream, a perturbation method has been employed to linearize the equation 

those have been solved by using Hankel’s Transformation technique. Naturally, the studies of these systems are 

mathematically interesting and physically useful for various reasons. 

key word :  particulate suspension , boundary layer characteristics , volume  fraction,  

incompressible flow. 

NOMENCLATURE :   

                            (x, y, z)   Space coordinates 

                   (u, v, w)    Velocity components of fluid phase 

                      (up, vp,wp)  Velocity components of particle phase 

                   w,v,u   Dimensionless velocity components of fluid phase 

                         ppp w,v,u   Dimensionless velocity components of particle phase 

                             T  Temperature of fluid phase 
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                              Tp  Temperature of particle phase 

               
10 ff C,C   Skin friction coefficients at the lower and upper plates respectively 

             Cp, Cs  Specific heats of fluid and SPM respectively 

                             K  Thermal conductivity 

                             Re  Fluid phase Reynolds number 

          
peR   Particle phase Reynolds number 

I.INTRODUCTION 

In the present chapter, we discussed the effect of volume fraction in axi symmetric jet mixing of incompressible 

fluid in cylindrical polar coordinates. Assuming the velocity and temperature in the jet to differ only slightly 

from that of the surrounding stream, a perturbation method has been employed to linearize the governing 

differential equations. The resulting linearize equations have been solved by using Hankel’s transformation 

technique. Numerical computations have been made to discuss the profiles of transverse perturbation fluid 

velocity. Consideration of finite volume fraction shows that the magnitude of transverse perturbation fluid and 

particle velocity reduced significantly.  

 

II. MATHEMATICAL FORMULATION 

The equation governing the study two-phase boundary layer flow in axi-symmetric case can be written in 

cylindrical polar coordinates as  

Equation of Continuity in Fluid phase :  
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Equation of Motion in fluid phase : 
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Heat equation in fluid phase : 
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To study the boundary layer flow, we introduce the dimensionless variables are 
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Now considering the flow from the orifice under full expansion we can assume that the pressure in the mixing 

region to be approximately constant. Hence, the pressure at the exit is equal to that of the surrounding stream. 

Therefore, both the velocity and the temperature in the jet is only slightly different from that of the surrounding 

stream. The coefficient of viscosity  and thermal conductivity K are assumed to be constant. Then it is possible 

to write 
110110 ppppp10ppppp110 ,TTT,TTT,vv,uuu,vv,uuu   where 

the subscripts 1 denotes the perturbed values which are much smaller than the basic values with subscripts ‘0’ 

of the surrounding stream, i.e. ,TT,uu,uu 10pp10 10
  

10 pp TT  . Using the dimensionless 

variable and the perturbation method the non linear equations (1) to (3) written as 
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The boundary conditions for 
11 pp11 vandu,v,u  are 
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III.METHOD OF SOLUTION 

The governing linearized equation (4) have been solved by using Hankel’s transform technique and using the 

relevant conditions from (7) to (11) we get  
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Hankel inversion of (12) gives 
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Where J0 and J1 are the Bessel function of zero and first order respectively. 
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Fig.1: Profiles of transverse perturbation f luid velocity
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(Fig: 1) 

FIg.2: Profiles of transverse perturbation f luid velocity
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(Fig: 2) 
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Fig.3: Profiles of transverse perturbation f luid velocity.
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(Fig:3) 

 

IV.DISCUSSION OF RESULT AND CONCLUSION 

Numerical computation have been made by taking Pr = 0.72,  

u10 = up10 = T10 = Tp10 = p10 = 0.1,  = 0.01. The velocity and temperature at the exit are taken nearly equal to 

unity. 

Figures 1, 2 and 3  show the profiles of transverse perturbation fluid velocity v1 for  = 0.1, 0.2 and 0.3 and for 

different values of Z. It is observed that the effect of increase in concentration  parameter  of dust particles is to 

decrease the magnitude of v1. It is also observed that the transverse velocity v1 attain a maximum value at  r 

=1.25. Hence we conclude that consideration of finite volume fraction shows that the magnitude of transverse 

fluid velocity reduce significantly.  
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