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ABSTRACT  

One of the effective methods to control the spread of the disease is to keep some of the highly infected people in 

isolation for some time. The word quarantine means isolating some infectives from the infectious class. In this 

paper an SIQS epidemic model is introduced with saturated incidence rate and quarantine. We have obtained 

threshold 
qR which analyze the effect of the quarantine and outcomes of the disease. If 

qR is less than 1, then the 

disease-free equilibrium exists and is globally stable i.e. disease dies out. If 
qR is greater than 1, then there 

exists a unique positive equilibrium and is globally stable i.e. disease becomes endemic. The stability of the both 

equilibrium are proved by Routh-Hurwitz criteria, Lyapunov function and Dulac criteria. 
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I. INTRODUCTION  

The most commonly used effective methods to control the spread of disease are vaccination, treatment and 

quarantine. In order to reduce transmission of infection from infective class to susceptible class, one intervention 

procedure is to isolate some infective individuals. The word quarantine means to say about the forcefully or 

voluntarily isolating some infective individuals from the infective class.  In the SIQS model infectious do not 

confer immunity, some of the susceptible becomes infected and then some infectives remains in the infectious 

class I for their whole infectious period before they return to the susceptible class S, while other infective 

individuals are transferred in to a quarantine class Q. 

Feng et al [1, 2, 3, 4] formulated some quarantine models on disease transmission with different reaction 

incidence rate and studied the effect of quarantine. Hethcote et al [5] analyzed effect of quarantine in six SIQS 

and SIQR endemic models for infectious diseases with simple mass action, standard and quarantine-adjusted 

incidence rates. The incidence in an epidemic model is the rate at which susceptible becomes infectious. 

Number of incidence rates such as bilinear, nonlinear, standard, saturated, nonmonotone etc. have been defined 

and studied by different authors in epidemic models and presented a thorough qualitative analysis of the models 

[6, 7, 8, 9, 10, 11].  
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In this paper, we have considered an SIQS epidemic model with quarantine and saturated incidence rate 

( )
1

SI
g S I
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


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
 proposed by Anderson and May [7] and also used by Gao S et al [9] Wang and Jiang [12]. First 

we obtained the disease-free and the endemic equilibrium and then discuss the stability at these equilibrium 

points. Finally, in support of theoretical analysis the numerical simulations are carried out. 

 

II. MATHEMATICAL MODEL 

The model is given by the following non-linear ordinary differential equations: 
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                                                           (2.1) 

Where parameters 
1, , , , , ,b d d    and  are positive constants. The constant b is the recruitment rate 

(including births and immigrations)of susceptible individuals, d  is the per capita natural death rate,  is the 

average number of adequate contacts (sufficient for transmission) of a person per unit time,   is the rate 

constant for individuals leaving the infective compartment I for the quarantine compartment Q , 
1d is the 

disease related death rate constant in compartments I and Q , and  and  are the rates at which individuals 

recover and return to susceptible compartment S from compartments I and Q respectively, is the parameter
 

measures the proper prevention taken by susceptible population for epidemic control. 
 

Total population size N S I Q     i.e. ' ' ' 'N S I Q    

1' ( )N b dN d I Q      

In the absence of disease 'N b dN   .This gives
0

dtb
N N e

d

  . As ,
b

t N
d

  i.e. population size 

N approaches to the carrying capacity
b

d
 . It follows that the solution of (2.1) exists in the region defined 

by 3( , , ) : , , 0,
b

S I Q R S I Q S I Q
d

 
       

     

III. EQILIBRIUM POINTS
 

For equilibrium points of (2.1), we have  
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                                                     (3.1) 

The system (2.1) always has the disease-free equilibrium point 0 ,0,0
b

E
d

 
  
 

 .                                            

Define the threshold
1( )( )

q

b
R

b d d d



  


   
  as the average number of secondary infections when one 

infective is entered into totally susceptible population. The number 
qR is called the quarantine reproduction 

number and can be derived by next generation method [13]. Here we are using the term ‘quarantine 

reproduction number’ for the threshold, because in model the quarantine process is used to control the disease.   

 Solving (3.1) we obtain an endemic equilibrium point * * * *( , , )E S I Q of the system (2.1) in   when 1qR  , 

where 
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Note that  * * * * 1

1 1( )[ ( 1) ]q q

bd b
N S I Q

d d b R dR d d
    
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It is clear that when the disease-related death rate constant
1 0d  , the total population 

*N at the endemic 

equilibrium *E approaches to the disease-free carrying capacity
b

d
. 

IV. LOCAL STABILITY ANALYSIS 

Theorem (4.1): If 1qR  , then the disease free equilibrium 
0E of the system (2.1) is locally asymptotically 

stable. If 1qR  , then the equilibrium 
0E is unstable, the disease persists and the positive equilibrium *E is 

locally asymptotically stable in the region . 

Proof:  The variation matrix of the system (2.1) is  
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                      (4.1) 

At disease-free equilibrium 0 ,0,0
b

E
d

 
  
 

 , the variation matrix (4.1) becomes 
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The characteristic equation of 
0( )V E is 
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Clearly the two eigen values are negative and third will also be negative if 1( )
( )

b
d d

b d


 


   


 i.e.   

1qR  . Hence the disease-free equilibrium 
0E is locally asymptotically stable if 1qR  and unstable if 1qR  . 

Now, at the endemic equilibrium * * * *( , , )E S I Q when 1qR  , the variation matrix (4.1) is   
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The characteristic equation of *( )V E  is 
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i.e. 1 1 1 1 1 1 2 1 2 1 1( )( )( ) [( )( ) ] 0V d d d d d V V V d d                           

Putting 1 1 1, ,K d d D d d M V d           and solving, we get 
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1 1 1 2 1 3 0a a a      , Where 

1 2 1 2( )a M K D V K D d V V          

2 2 1 2 1 1 1 2( )( ) ( ) ( ) ( ) ( )( )a MK M K D V V V d K D KD V d V V K d              
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1 2 3 1 2 1 1

2

1 2 1 1

( )[ ( ) ] ( )[( )( 2 ) ( )]

( ) ( ) [ ( )( )]

a a a K D d d K D KD V V d K d K D V d

V V d K V d d D



 

            
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Clearly 
1 2 3, , 0a a a  and 

1 2 3 0a a a 
 

provided
1 2V V . Hence by Routh-Hurwitz criteria the endemic 

equilibrium *E is locally asymptotically stable if 1qR  .  

 

V. GLOBAL STABILITY ANALYSIS 

Theorem 5.1: If 1qR  , then the disease-free equilibrium 
0E of the system (2.1) is globally asymptotically stable 

in the region . If 1qR   and 
1 0d   (i.e. there are no disease-related deaths), then the endemic equilibrium *E  

is globally asymptotically stable in the region  ( , , ) : 0S I Q I  . 

Proof: First we prove the global stability at the disease-free equilibrium 
0E when 1qR  .Consider a Lyapunov 

function L I . Then  the Lyapunov derivative will be 

1 1( ) ( ) 0
1

S b
L I d d I d d I

S d b

 
   

 

   
                   

, since 
b

S
d

  and 1qR  .Thus 

if 1qR  , then 0L  . Note that, 0L   if and only if , 0
b

S I
d

 
 
and 0Q  . Therefore the largest positive 

invariant set in  ( , , ) : 0S I Q L  is the singleton 0E , where 
0E is the disease-free equilibrium. Thus by 

Lasalle’s invariant principle [14], 
0E is globally asymptotically stable in . 

In order to prove the global stability of *E  when 1qR   and 
1 0d   (i.e. there are no disease-related deaths), 

first note that 'N b dN  . This gives 
b

N
d

  as t  . In this case the limit system of (2.1) is given by  
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                                         (4.2) 

Now, we discuss in the first quadrant of IQ-Plane. Using Dulac’s criteria with multipliers 1

1
D

I
  , 
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We have 
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d
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 
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Thus there is no limit cycle i.e. no periodic solutions exist in the region. Hence by Poincare-Bendixson theory, 

endemic equilibrium *E  is globally asymptotically stable in the region  ( , , ) : 0S I Q I   for the limit 

system (4.2) and hence for the original system (2.1). 

 

VI. NUMERICAL SIMULATIONS AND CONCLUDING REMARKS 

In this paper we have carried out the global analysis of an SIQS model and observe that the basic quarantine 

number
qR plays an important role to control the disease. Our main results show that if 1qR  , the disease-free 

equilibrium is globally stable and if 1qR  , then the endemic equilibrium exists and is globally stable. Beside 

this analytical study, we provide some numerical solutions as under: 

Disease-free equilibrium: Choosing the parameters as under 

18, 0.1, 0.01, 0.4, 1, 0.3, 0.2, 0.15,( (0), (0), (0)) (50,20,10)b d d S I Q              gives
 

1qR  and 

in this case ( )S t approaches to its steady state value while ( )I t and ( )Q t approaches to zero as time goes to 

infinity, the disease disappears and dies out (fig.5.1). 

Endemic equilibrium: Choosing the parameters as under
 

110, 0.1, 0.6, 0.3, 0.5, 0.4, 0, 0.1,( (0), (0), (0)) (50,20,10)b d d S I Q             , gives 1qR  and in 

this case all the components ( )S t , ( )I t and ( )Q t  approaches to their steady state values as time goes to infinity, 

the disease  becomes endemic (fig.5.2). 
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Figure 5.1: This figure shows that the disease dies out 
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Figure 5.2: This figure shows that the disease becomes endemic 

The quarantine process is one of the methods for reducing the average infectious period by isolating some 

infectives, so that they do not transmit the infection. In above SIQS model with quarantine, we can see that the 
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effective infectious period 
11 ( )d d    and 

qR decreases as the quarantine rate constant   increases. Since 

the mean residence time in the quarantine class Q is 1 
 
and the expression for 

qR is independent from 

parameter , it shows that the assumption of quarantine models that the people in the quarantine class Q do not 

infect others and people are not infectious when they move out of the quarantine class, is acceptable. Also it is 

clear from the expressions of 
qR that it depends on  and is decreases as  increases, it indicates that the spread 

of diseases decreases as the psychological protective measures for the infective increases. 
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