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ABSTRACT 

In this manuscript we develop a new generalized entropy measure and corresponding to this measure we also 

develop a new generalized average code-word length and find the bounds of new generalized average code-

word length in terms of new generalized entropy measure. Also we show that the measures defined in this 

communication are the generalizations of some well-known measures in the subject of coding and information 

theory. The bounds found in this paper for discrete channel have been verified by considering Huffman and 

Shannon-Fano coding schemes by taking an empirical data. The important properties of the new entropy 

measure have also been discussed. 
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I.INTRODUCTION 

The concept of entropy was introduced by C. E Shannon [1] in his paper "A Mathematical Theory of 

Communication" Wikipedia defines entropy as “a measure of the uncertainty associated with a random variable. 

Shannon entropy, quantifies the expected value of the information contained in a message, usually in units such 

as bits and a 'message' means a specific realization of the random variable. Equivalently, the Shannon‟s entropy 

is a measure of the average information content one is missing when one does not know the value of the random 

variable. Entropy laid the foundation for a comprehensive understanding of communication theory, Shannon‟s 

entropy can be considered as one of the most important breakthroughs over the past fifty years in the literature 

on probabilistic uncertainty. The concept of entropy has been applied in a wide variety of fields such as 

statistical thermodynamics, urban and regional planning, business, economics, finance, operations research, 

queuing theory, spectral analysis, image reconstruction, biology and manufacturing. 

Let be a discrete random variable taking finite number of possible values  with respective 

probabilities  and  we denote 
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          (1)

  

and we call the scheme (1) as the finite information scheme. Shannon [1] proposed the following measure of 

uncertainty or measure of information associated with a finite information scheme (1) and calls it as entropy. 

      (2) 

The measure (2) serves as a suitable measure of entropy. Let  be the probabilities of  codewords 

to be transmitted and let their lengths  satisfy Kraft [2] inequality, 

           (3) 

Where,  is the size of code alphabet. 

For uniquely decipherable codes, Shannon [1] showed that for all codes satisfying (3), the lower bound of the 

mean code-word length, 

           (4) 

lies between  and .Where  is defined in (2). Campbell [3] considered the more general 

exponentiated mean code-word length as 

   ,     (5)

  

and showed that subject to (3), the minimum value of (5) lies between  and , where 

        (6)

  

is Renyi‟s [4] entropy of order . 

Various researchers have considered different generalized entropy measures and corresponding to these entropy 

measures they also develop the generalized code-word lengths and develop the coding theorems under the 

condition of uniquely decipherability; see for instance the published articles of Nath [5] Inaccuracy and coding 

theory. Longo [6] obtained minimum value of useful mean code-word length in terms of weighted entropy given 

by Belis and Guiasu [7]. Guiasu and Picard [8] develop a noiseless coding theorem by obtaining the minimum 

value of another useful average code-word length. Gurdial and Pessoa [9] also extended the theorem by finding 

the lower bounds for useful average code-word length of order α; also various authors like Jain and Tuteja [10], 

Taneja et al [11], Bhatia [12], Hooda and Bhaker [13], Khan et al [14], Bhat and Baig [15, 16, 17, 18] have 



 

865 | P a g e  

 

developed different generalized coding theorems by taking into consideration different generalized information 

measures under the condition of uniquely decipherable codes. 

II.BOUNDS OF NEW AVERAGE CODE-WORD LENGTH IN TERMS OF NEW 

GENERALIZED ENTROPY MEASURE 

Define a new generalized entropy measure as: 

          (7) 

Where,  

Remarks for (7) 

I. When  (7) reduces to entropy, i.e., 

           (8) 

II. When  and , (7) reduces to Shannon‟s [1] entropy, i.e., 

    

 

Corresponding to (7) we define a new generalized average code-word length and is given by 

     (9) 

Where, D is the size of code alphabet. 

Remarks for (9) 

I. For , (9) reduces to code-word length corresponding to entropy (8) 

 i.e.,   

II. For  and , (9) reduces to optimal code-word length corresponding to Shannon [1] entropy,  

 i.e.,       (10) 

Now we found the bounds of (9) in terms of (7) under the condition  

           (11) 

This is Kraft‟s [2] inequality, where  is the size of code alphabet. 
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Theorem 1: For all integers  the sequence of code-word lengths  satisfies the condition (11), 

then the generalized average code-word length (9) satisfies the inequality 

    , .     (12) 

Where equality holds good iff 

          (13) 

Proof: By Holder
‟
s inequality we have 

         (14) 

For all  and  or . 

We see the equality holds iff there exists a positive constant  such that 

           (15) 

Making the substitution  

 ,  ,   and  

Using these values in (14), we get 

       (16) 

Now using the inequality (11) we get, 

        (17) 

Or, equivalently (17), can be written as 

        (18) 

Here following cases arise 

Case 1: 
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As , then , raising both sides to the power  , to inequality (18), we get 

         (19) 

As ,  then  and , multiply inequality 19), throughout by   

we get  

       (20) 

Or, equivalently we can write 

   . Hence the result for . 

Case 2: 

From equation (13), we have 

      

Or, equivalently we can write the above equation as 

           (21) 

Raising both sides to the power , to equation (21) and after suitable simplification, we get 

         (22) 

Multiply equation (22) both sides by , then summing over  and after suitable simplifications, we 

get 

         (23) 

Raising both sides to the power  to equation (23), then multiply both sides by , we get 

    . Hence the result. 
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Theorem 2: For every code with lengths  satisfies Kraft‟s inequality,  can be made to satisfy 

the inequality, 

    . Where    (24) 

Proof: From the theorem (1), we have 

    . 

Holds if and only if 

    ,  

Or, equivalently we can write the above equation as 

     

We choose the code-word lengths , in such a way that they satisfy the inequality 

     (25) 

Consider the interval 

   

Of length . In every   there lies exactly one positive integer , such that, 

    (26) 

We will first show that the sequence  thus defined satisfies the Kraft [2] inequality. From the left 

inequality of (26), we have 

    

Or, equivalently we can write the above expression as 

           (27) 
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Taking summation over  on both sides to the inequality (27), we get   

      

This is Kraft‟s [2] inequality. 

Now the last inequality of (26) gives 

     

Or, equivalently we can write the above expression as 

          (28) 

As,  then , and  raising both sides to the power  to inequality (28), 

we get 

    

Or, equivalently we can write the above expression as 

         (29) 

Multiply inequality (29), both sides by  then summing over  and after suitable simplifications, 

we get 

        (30) 

As,  then  and , raising both sides to the power  to inequality (30), 

then multiply the resulted expression both sides by  we get 

 . Hence the result for  

Thus from above two coding theorems we have shown that 

   . Where  
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In the next section noiseless coding theorems for discrete channel proved above are verified by considering 

Huffman and Shannon-Fano coding schemes on taking an empirical data. 

III.ILLUSTRATION 

In this section we illustrate the veracity of the theorems 1 and 2 by taking an empirical data as given in table 1 

and 2 on the lines of Hooda et.al [19]. Using Huffman coding scheme the values of ,  

 and  for different values of  and  are shown in the following table: 

Table 1: Using Huffman Coding Algorithm values of ,  and  for different 

values of  and . Here D=2 in this case, as we use here binary code. 

 

 

Now using Shannon-Fano coding scheme the values of ,   and  for different values 

of  and  are shown in the following table: 

Table 2: Using Shannon-Fano Coding Algorithm values of ,   and  for 

different values of  and . Here D=2 in this case, as we use here binary code. 

Probabilities 

 

Shannon

Fano 

Code- 

words 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

0.3846 0 1 0.9 1 11.6466 11.8035 98.6707% 12.4826 

0.1795 10 2 0.5 1 4.3725 5.3776 81.3091% 6.1836 

Probabilities 

 

Huffman 

Code 

words 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

0.3846 0 1 0.9 1 11.6466 11.7002 99.5416% 12.4826 

0.1795 100 3 0.5 1 4.3725 4.7714 91.6388% 6.1836 

0.1538 101 3       

0.1538 110 3       

0.1282 111 3       
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0.1538 110 3       

0.1538 1110 4       

0.1282 1111 4       

 

From the tables 1 and 2 we infer the following: 

1. Theorems 1 and 2 hold in both the cases of Shannon-Fano codes and Huffman codes. i.e. 

  . Where  

2. Mean code-word length  is less in case of Huffman coding scheme as compared to Shannon-

Fano coding scheme. 

3. Coefficient of efficiency of Huffman codes is greater than coefficient of efficiency of Shannon-Fano 

codes i.e. it is concluded that Huffman coding scheme is more efficient than Shannon-Fano coding 

scheme. 

In the next section the important properties of new generalized entropy measure have been 

studied. 

 

IV.PROPERTIES OF NEW GENERALIZED ENTROPY MEASURE 

In this section we will discuss some properties of the new generalized entropy measure  given in equation 

(7). 

Property 1:  is non-negative. 

Proof: From (7) we have 

   ,  

It is easy to see that for given values of  and , also we have and , 

therefore we conclude that . 

Property 2:  is a symmetric function on every  

Proof: It is obvious that  is a symmetric function on every  

  i.e.,  
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Property 3:  is maximum when and all the events have equal probabilities. 

Proof: When  and  Then which is maximum entropy. 

Property 4: For  and  is concave downward function for  

Proof: From equation (7) we have 

  That ,  

 

If  and  then the first derivative of (7) with respect to  is given by 

   

And the second derivative is given by 

  .  For all   and  

Since the second derivative of   with respect to  is negative on given interval 

 as  and , therefore, 

 is concave downward  function for  

V.CONCLUSION 

In this Paper we develop a new generalized entropy measure and corresponding to this measure we also develop 

a new generalized average code-word length and find the bounds of new generalized average code-word length 

in terms of new generalized entropy measure. Also we show that the measures defined in this communication 

are the generalizations of some well-known measures in the subject of coding and information theory. The 

bounds found in this paper for discrete channel have been verified by considering Huffman and Shannon-Fano 

coding schemes by taking an empirical data. The important properties of the new entropy measure have also 

been discussed. 
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