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ABSTRACT 

Algebra is one of the broad parts of mathematics, together with number theory, geometry and analysis.As such, it 

includes everything from elementary equation solving to the study of abstractions such as groups, rings, and fields. 

The word algebra is also used in certain specialized ways. A special kind of mathematical object in abstract algebra 

is called an "algebra", and the word is used, for example, in the phrases linear algebra and algebraic topology. 

Inthis paper, we discuss primality testingmethods involve arithmetic which are best understood in the context of 

algebraic number theory. 

 

I INTRODUCTION 

Primality testing of large numbers is very important in many areas of mathematics, computer science and 

cryptography. For example, in public-key cryptography, if we can find two large primes p and q, each with 100 

digits or more, then we can get a composite 

n= p * q 

with 200 digits or more. This composite n can be used to encode a message securely even when n is made public 

(we call n a public-key). The message cannot be decoded without knowledge of the prime factors of n. Of course, we 

can try to use a modern integer factorization method such as the Elliptic Curve Method to factor n and to get its 

prime factors p and q, but it would take about 20 million years to complete the job even on a supercomputer. Thus, it 

is practically impossible to decode the message. Another good example is the searching for amicable numbers. In 

the following algebraic method for generating amicable numbers,if we can make sure thatthe following four integers 

p, q, r, s 

 

p=2
x
*g-1 

q = 2 
y
 + (2 

n+l
 - 1) * g  where  0<x<n 

r= 2
n-y

*g*q-1     g=2
n-x

+ 1 

S =2
n-y+x

* g2 * q – 1    0<y<n 
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are all primes, then the pair(m, n) = (2
n
qpr, 2

n
qs) 

is an amicable pair. Thus, searching for amicable numbers is often the same as the primalitytesting of some related 

integers. 

 

Primality testing is one of the oldest problems as well as open problems in mathematics, which goes back to the 

ancient Greeks about 2000 years ago. The problem can be simply described as follows: 

 

Input: n (n  Natural Numbers and n > 1). 

 

Yes, if n  Primes, 

                                                         Output:      No, ifn  Composites. 

Unfortunately, it is not a simple matter to determine whether or not a random integer n is prime,particularly when n 

is very large. An efficient algorithm for primality testing from the complexitypoint of view would have to run in 

O(log
k
n) steps, for some fixed k. But unfortunately, no such deterministic algorithm exists for random integer n, 

although, for example, Miller [2] showed that n can be checked in O(log
5
 n) steps, assuming the truth of the 

unproved Extended Riemann Hypothesis (ERH). Recently, many of the modern primality testing algorithms have 

been incorporated in Computer Algebra Systems (CAS) such as Axiom and Maple (see [3,4] for a reference) as a 

standard. In this paper, we shall discuss primality testing of large numbers in Maple. 

 

II STRONG PSEUDOPRIMALITY TESTS AND LUCAS TESTS 

In this section, we introduce some basic concepts and ideas of probable primes, pseudo primesand pseudoprimality 

tests, which will be used throughout the paper. 

 

THEOREM 1. (FERMAT'S THEOREM) Ifp is prime and gcd(a,p) = 1, then 

 

a
p-1

l(modp). 

 
Most modern primality testing algorithms depend in some way on the converse (an immediate corollary) of Fermat's 

Theorem. 

 

COROLLARY 1. (CONVERTE OF FERMAT'S THEOREM-FERMAT TEST) Let n be an odd 

positive integer. Ifgcd(a, n) = 1 and then n is composite. 

 

a
n-1

1 (mod n), 
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By Corollary 1, we know that if there exists on a with 1 < a < n, gcd (a, n) = 1 and a
n-1

1 (modn), then n must be 

composite. What happens if we find a number n such that a
n-1

 (mod
n-1

)? Can we conclude that n is certainly a 

prime? The answer is unfortunately not, because n sometimes is indeed a prime, but sometimes is not! This leads to 

the following important concepts of probable primes and pseudo primes. 

 

DEFINITION 1. If a
n-1

1(modn), then we call n a (Fermat) probable prime to the base a. A(Fermat) probable prime 

n to the base a is called a (Fermat) pseudoprime to the base a if n is composite. 

For example, 2
1387-1

 l(mod 1387). Thus, 1387 is a Fermat probable prime to the base 2. But since 1387 = 19 * 73 is 

composite, then it is Fermat pseudoprime to the base 2. A further and immediate improvement over the Fermat test 

is the strong pseudoprimality test (often called the Miller-Rabin test, or just the strong test). We describe it in the 

following algorithmic form. 

 

ALGORITHM 1. (Strong Pseudoprimality Test) 

 

[S1] Let n be an odd number, and the base a be a random number in the range 1 < a < n. Find 

j and d with d odd, so that n - 1 =2
j
d. 

 

[S2]Compute a d (modn). Ira a (modn) - ±1 (modn), then n is a strong probable prime andoutput "Yes"; stop. 

 

[S3]Square a
d
 to compute a

2d
(mod n). If a

2d
(mod n) 1 (mod n), then n is composite andoutput "No"; stop. If 

a
2d

(modn) = -1 (modn), then n is a strong probable prime and output "Yes"; stop. 

 

[S4]Repeat step S3 with a
2d

 replaced by 

 

a
4d

, a
8d

, ….., a
2i-1d

 

(Note that the sequence is often called the Miller-Rabin sequence.) 

 

a
d
, a

2d
, a

4d
, a

8d
, ….., a

2i-1d 

 

[S5] If the procedure has not alreadyterminated, then n is composite and output "No". 
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DEFINITION 2. A positive integer n with n - 1 = d *2
j
 and d odd, is called a strong probableprime to the base a if it 

passes the strong pseudoprimality test described above (i.e., the lastterm in the Miller-Rabin sequence is 1, and the 

first occurrence of 1either is the first term or ispreceded by -1). A strong probable prime to the base a is called a 

strong pseudoprime to thebase a if it is a composite. 

 

Although very few composites can pass the strong pseudoprimality test, the test itself is notdeterministic, but 

probabilistic. For example, the composite n = 2047 23 * 89 can pass the strong pseudoprimality test, because n -1 

=2
1
* 1023, d = 1023 and the Miller-Rabin sequence is 2

1023
l(mod2047), 2

2046
 l(mod2047). So n = 2047 is a 

strong pseudoprime to the base 2.Thus, we cannot conclude that n is prime just by a strong primality test, we will 

need some other tests as well. One of the other tests is the Lucas (pseudoprimality) test. Noted that there is a special 

Lucas test (often called Lucas-Lehmer test) for Mersenne primes, based on the following theorem. 

 

THEOREM 2. (LUCAS-LEHMER TEST FOR MERSENNE PRIMES) Let p be an odd prime. 

Definethe Lucas sequence {Uk} by 

 

Then 2
p
 - 1 is prime if and only if Up-2 0 (mod2

p
-1). 

For example, suppose we wish to test the primality of 2
7
-1. We first compute the Lucassequence {Uk} for 2

7
-1 (k = 

0, 1 . . . . , p-2 = 5): 

Since Up-2 0(mod 2
p
-1), then 2

7-
1 is a prime. 

The Lucas test we are interested in here is a more general one. It is an analog of Fermat's theorem for Lucas 

sequences (see [5] or [6] for a reference). 

 

III PRIMALITY TEST 

Maple is a very powerful computer algebra system developed by the Symbolic ComputationGroup at the University 

of Waterloo and the Institute for Scientific Computing at ETH Zurich. It can manipulate mathematical formulas 

following the rules of number theory, algebra, geometry, trigonometry, calculus and combinatory. In this section, we 

are only concerned with the primality test facility in the number theory package of Maple.For example, Pinch at 

Cambridge [4] tested the numbers in the followinglist y0 (the first two are Fermat pseudoprimes to the base 2 and the 

other three axe Carmichaelnumbers): 
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2152302898747 = 6763 * 10627 * 29947 

3474749660383 = 1303 *16927*157543 

10710604680091 = 3739 *18691 * 153259 

4498414682539051 = 46411 * 232051 * 417691 

6830509209595831 = 21319 * 106591 * 3005839 

and found that they all can pass the isprime test. That is, Maple declares the above five composites to be prime. But 

starting from Maple V Release 3, the isprime test uses a combination of a strong pseudoprimality test and a Lucas 

test. It is much more powerful and reliable than that in Maple. We tested the five numbers in y0by Maple V Release 

3, and found that they cannot pass the isprime test. That is, Maple this time declares the five numbers in y0 to be 

composite. As we can see, these numbers are indeed composites, so Maple V Release 3 provides a powerful and 

reliable approach to the primality test of large numbers. 

 

As mentioned previously; primality testing is a very important operation in searching for amicablenumbers. In a 

research project on algebraic methods for generating amicable numbers, we have tested three other lists of integers 

by using the isprime test. 

 

List yl: Four integers 

 

9288811670405087 

145135534866431 

313887523966328699903, 

45556233678753109045286896851222527 

of p, q, r, s in [1], which generate a new 65-digit amicable pair. 

 

List y2: 204 integers (see Table 1 in the Appendix) of sixty-eight q, r, s in [11], which generate 

68 new large amicable pairs in the 101-122 digit range. 

 

List y3: Two large 520-digit numbers in [1] 

 

663228553696362109159972051763094684878515990025827353794913905891233290295650_ 

927164926978078060090008525720971052844194832159866585480713665440902566137427_ 

066765868827283517939906880431444760818325701672601612024082063487549161697774_ 

311098436355751715192728637914964348021736278380458303306889299215069309626816_ 

895201720064738466242877284877638913974106333092215777113364013087483467835695_ 
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807181754057979471754499144424268957636699060565069202221342263517860285324742_ 

9237872442965593215267325943862952255228142339076351 

632740275378922488701815325714175514794964816040594404799357848351264236526406_ 

845288532090020467602818361101121098304165256160155667579053088250671590322309_ 

057553824786443800578203216214872615909676099206945885060184879357274322644997_ 

254248956714784431538486182141543538783008629621566451550927419407740660304484_ 

945027709696773434687534485995266004134857036148105086354503584538997217621468_ 

327457083003403742747130571751051829100781214766777504855678715294348177033954_ 

7458147078975732794133237994324270311981965407027199 

which generates the largest amicable pair with 1041 digits found by HolgerWiethaus inWest Germany. 

All the 210 numbers in lists y1, y2, and y3 are found to be prime on Maple. Thetesting only takes about half hour on 

a parallel Silicon Graphics R4D/340S computer in the University of York Computing Centre. Notice that I have also 

tested these 210 numbers to be prime in Maple V Release 2 in 1993. As suggested by Bradley Lucier at Purdue 

University, I have confirmed that all the numbers in y1 and y2 are indeed prime on a Silicon Graphics 

R4D/340Scomputer in the University of York Computing Centre, by using a deterministic elliptic curvetest 

algorithm ECPP (Elliptic Curve Primality Proving) developed by Atkin and Morain [9]. Asfor the primality of the 

two large 520-digit numbers in list y3, the confirmation was actuallycompleted by F. Morain in France by using a 

new version of his ECPP program. 

 

The biggest number we have tested on Maple V Release 3 is a 564-digit prime factor of the11
th

 Fermat number F11: 

 
173462447179147555430258970864309778377421844723664084649347019061363579192879_ 

108857591038330408837177983810868451546421940712978306134189864280826014542758_ 

708589243873685563973118948869399158545506611147420216132557017260564139394366_ 

945793220968665108959685482705388072645828554151936401912464931182546092879815_ 

733057795573358504982279280090942872567591518912118622751714319229788100979251_ 

036035496917279912663527358783236647193154777091427745377038294584918917590325_ 

110939381322486044298573971650711059244462177542540706913047034664643603491382_ 

441723306598834177 

 
The test only takes about 6 minutes of CPU time on a Silicon Graphics R4D/340S machine.Since no 

counterexample has been found for the isprime test in Maple V Release 3, we can have the following much stronger 

definition and result for probable primes. 
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DEFINITION 4. Let n be a positive integer and n > 1. If n passes the isprimetest in Maple VRelease 3, then n is 

called a Maple probable prime. 

 

IV CONCLUSION 

Inthis paper, we discussedprimality testing methods involve arithmetic which are best understood in the context of 

algebraic number theory.Since the primality testingfacility isprime in Maple V Release 3 is based on a combined use 

of a strong pseudoprimality test and a Lucas test, it is a very efficient and reliable test for large numbers. No 

composite has been found that can pass the isprime test in Maple V Release 3. Our computation experience shows 

that the Maple primality test results are exactly the same as that obtained by the deterministic elliptic curve test in 

ECPP. This proves, at least from a practical point of view, that the isprimetest in Maple V Release 3 is reliable. Our 

experience also shows that the Maple primality test is always far more efficient than ECPP, particularly for large 

numbers. For example, to test the two large 520-digit numbers in y3, Maple only needs a few minutes of CPU time 

on a Silicon Graphics R4D/340S computer, but ECPP will need several hours. But of course, we usually need to use 

an elliptic curve test or some other deterministic tests to confirm the results obtained by the Maple test. So we are 

finally approaching to a more practical and realistic primality test for large numbers (assume n is the integer to be 

tested): 
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