On w- α - \mathfrak{T} sets and w- α - \mathfrak{T} functions

Nitakshi Goyal

Department of Mathematics, Punjabi University Patiala, Punjab(India)

ABSTRACT

In this paper we will give various properties of w- α - \mathfrak{T} -open and w- α - \mathfrak{T} -closed sets. Also w- α - \mathfrak{T} -open and w- α - \mathfrak{T} -closed mappings are discussed.

Key Words and phrases: w- a- I- open, w-semi-I-open, w-pre-I-open.

2000 **MSC**: 54C10, 54A05, 54D25,54D30.

I.INTRODUCTION

In [2], Dontchev introduced the concept of pre- \mathfrak{T} -open sets and in [3] Hatir and Noiri introduced the notion of semi- \mathfrak{T} -open sets, α - \mathfrak{T} -open sets and β - \mathfrak{T} -open sets. Further in [1], A.Acikgoz et al. Obtain several characterizations of α - \mathfrak{T} -continuous functions and introduced the concept of α - \mathfrak{T} -open functions in ideal topological spaces and obtain their properties. The subject of ideals in topological spaces were introduced by Kuratowski[4] and further studied by Vaidyanathaswamy[5]. Corresponding to an ideal a new topology $\tau^*(\mathfrak{T}, \tau)$ called the *-topology was given which is generally finer than the original topology having the kuratowski closure operator cl^{*}(A) = A \cup A^*(\mathfrak{T}, \tau)[6], where A^*(\mathfrak{T}, \tau) = {x \in X : U \cap A \notin \mathfrak{T} for every open subset U of x in X called a local function of A with respect to \mathfrak{T} and τ . We will write τ^* for $\tau^*(\mathfrak{T}, \tau)$.

The following section contains some definitions and results that will be used in our further sections.

Definition 1.1.[4]: Let (X, τ) be a topological space. An ideal \mathfrak{T} on X is a collection of non-empty subsets of X such that (a) $\phi \in \mathfrak{T}$ (b) $A \in \mathfrak{T}$ and $B \in \mathfrak{T}$ implies $A \cup B \in \mathfrak{T}$ (c) $B \in \mathfrak{T}$ and $A \subset B$ implies $A \in \mathfrak{T}$.

Definition 1.2 : Let(X, τ , \mathfrak{T}) be an ideal space and A be any subset of X. Then A is said to be

- a.) semi- \mathfrak{T} -open[3] if $A \subset cl^*(int(A))$.
- b.) pre- \mathfrak{T} -open[2] if A \subset int(cl*(A)).
- c.) α \mathfrak{T} -open[3] if A \subset int(cl*(int(A))).
- d.) β - \mathfrak{T} -open[3] if A \subset cl(int(cl*(A))).

II.RESULTS

Definition 2.1: Let (X,τ,\mathfrak{T}) be an ideal space and A be any subset of X. Then A is said to be

a.) w- α - \mathfrak{T} - open if A \subset int(cl(int*(A))).

- b.) w-semi- \mathfrak{T} -open if $A \subset cl(int^*(A))$.
- c.) w-pre- \mathfrak{T} -open if $A \subset int^*(cl(A))$.

Definition 2.2: Let (X, τ, \mathfrak{T}) be an ideal space and A be any subset of X. Then A is said to be

- a.) α^* \mathfrak{T} open if $A \subset int^*(cl^*(int^*(A)))$.
- b.) semi*- \mathfrak{T} -open if $A \subset cl^*(int^*(A))$.
- c.) Pre*- \mathfrak{T} -open if $A \subset int^*(cl^*(A))$.

Lemma 2.3: Let (X,τ,\mathfrak{T}) be an ideal space and U and V be two τ^* -open subsets of X. Then prove that

 $cl^{*}(U) \cap V \subset cl^{*}(U \cap V).$

Proof: Let $x \in cl^*(U) \cap V$. To prove $x \in cl^*(U \cap V)$. Let W be any τ^* -open set containing x. Then $x \in V$ and V is τ^* -open set implies that $V \cap W$ is also τ^* -open set containing x. Now $x \in cl^*(U)$ implies that $V \cap W \cap U \neq \phi$ and so $W \cap (U \cap V) \neq \phi$ implies that $x \in cl^*(U \cap V)$.

Hence $cl^*(U) \cap V \subset cl^*(U \cap V)$.

Theorem 2.4: Let (X,τ, \mathfrak{T}) be an ideal space and A be any subset of X. Then prove that A is w- α - \mathfrak{T} -open if and only if A is w-pre- \mathfrak{T} -open and A is w-semi- \mathfrak{T} -open subset of X.

Proof: Firstly, let A is A is w- α - \mathfrak{T} -open subset of X then A \subset int(cl(int*(A))) and so A \subset cl(int*(A)). Also

 $A \subset int^*(cl(A))$. This implies that A is w-pre- \mathfrak{T} -open and w-semi- \mathfrak{T} -open subset of X.

Conversely, let A is w-pre-I-open and w-semi-I-open subset of X. Then A is w-pre-I-open implies that

 $A \subset int^*(cl(A))$ and further A is w-semi- \mathfrak{T} -open implies that $A \subset int^*(cl(cl(int^*(A)))) = int^*(cl(int^*(A)))$.

Hence A is A is w- α - \mathfrak{T} -open subset of X.

Proposition 2.5 : Let (X,τ, \mathfrak{T}) be an ideal space.

- (a) If V is semi*- \mathfrak{T} -open and A is α *- \mathfrak{T} -open subset of X then V \cap A is semi*- \mathfrak{T} -open subset of X.
- (b) If V is pre- \mathfrak{T} -open and A is α^* - \mathfrak{T} -open subset of X then V \cap A is pre*- \mathfrak{T} -open subset of X.

Proof: (a): Let V is semi*- \mathfrak{T} -open and A is α^* - \mathfrak{T} -open subset of X.

Then $V \cap A \subset cl^*(int^*(V)) \cap int^*(cl^*(int^*(A)))$

 \subset cl*(int*(V) \cap int*(cl*(int*(A)))) using Lemma 2.3.

 $\subset cl^*(int^*(V) \bigcap cl^*(int^*(A)))$

International Conference on Advance Studies in Engineering and Sciences

Sri Satya Sai University of Technology and Medical Sciences , Sehore (M.P.)ICASES-172nd December 2017, www.conferenceworld.inISBN: 978-93-86171-83-2

 $\subset cl^*(cl^*(int^*(V) \cap int^*(A)))$

 $= cl^{*}(int^{*}(V) \cap int^{*}(A))$

 \subset cl(int*(V \cap A)).

Hence $V \cap A$ is semi*- \mathfrak{T} -open subset of X.

(b): Let V be pre*- \mathfrak{T} -open and A be α^* - \mathfrak{T} -open subset of X.

Then $V \cap A \subset int^*(cl^*(V)) \cap int^*(cl^*(int^*(A)))$

= int*(int*(cl(V)) \cap cl(int*(A)))

 $\subset int^*(cl(int^*(cl^*(V))\cap int^*(A)))$

 \subset int*(cl(cl(V)\cap int*(A)))

 \subset int*(cl*(cl*(V\cap int*(A)))

= int*(cl*(V \cap int*(A))

 \subset int*(cl*(V \cap A)).

Hence $V \cap A$ is pre*- \mathfrak{T} -open subset of X.

Corollary 2.6: Let (X, τ, \mathfrak{T}) be an ideal space.

- (a) If V is semi*- \mathfrak{T} -open and A is τ *-open subset of X then V \cap A is semi*- \mathfrak{T} -open.
- (b) If V is pre*- \mathfrak{T} -open and A is τ *-open subset of X then V \cap A is semi*- \mathfrak{T} -open.

Proof: Proof follows from the above Theorem and the fact that every τ^* -open subset of X is α^* - \mathfrak{T} -open subset of X.

Theorem 2.7: Let (X,τ, \mathfrak{T}) be an ideal space. Then a subset B of X is w- α - \mathfrak{T} -open iff there exist τ^* -open subset U of X such that $U \subset B \subset int^*(cl(U))$.

Proof: Firstly, let B be w- α - \mathfrak{T} -open subset of X. Then B \subset int*(cl(int*(B))). Let U = int*(B). Since we know that int*(B) is τ *-open so U is τ *-open subset of X such that U \subset B \subset int*(cl(U)).

Conversely, let there exist τ^* -open subset U of X such that $U \subset B \subset int^*(cl(U))$. Now $U \subset B$ implies that $int^*(U) \subset int^*(B)$ and so $U \subset int^*(B)$. Therefore, $B \subset int^*(cl(U))$ implies that $B \subset int^*(cl(int^*(B)))$.

Hence B is w- α - \mathfrak{T} -open subset of X.

Theorem 2.8: If A is w-semi- \mathfrak{T} -open subset of an ideal space (X, τ, \mathfrak{T}) and be any subset of X such that

 $A \subset B \subset int^*(cl(A))$ then prove that B is also w- α - \mathfrak{T} -open.

Proof: Let A be any w- α - \mathfrak{T} -open subset of X and B be any subset of X such that $A \subset B \subset int^*(cl(A))$. Now A is w- α - \mathfrak{T} -open subset of X so by the above Theorem 2.7 there exist τ^* -open subset G of X such that $G \subset A \subset int^*(cl(G))$ and so $G \subset A \subset B \subset int^*(cl(A)) \subset int^*(cl(int^*(cl(G)))) \subset int^*(cl(cl(G)))$

= int*(cl(G)).

Therefore, $G \subset B \subset int^*(cl(G))$.

Hence B is w- α - \mathfrak{T} -open.

Theorem 2.9: Let (X, τ, \mathfrak{T}) be an ideal space. Then prove the following:

- (a) If $\{U_{\alpha}\}_{\alpha \in \Delta}$ be a family of w- α - \mathfrak{T} -open subsets of X. Then prove that $\bigcup_{\alpha} U_{\alpha}$ is also a w- α - \mathfrak{T} -open set.
- (b) If U is w-α-ℑ-open subset of X and V is τ-open subset of X then prove that U∩V is also a w-α-ℑ-open set.

Proof: (a) Since $\forall \alpha \in \Delta$, U_{α} is w- α - \mathfrak{T} -open subset of X. So $U_{\alpha} \subset \operatorname{int}^*(\operatorname{cl}(\operatorname{int}^*(U_{\alpha})))$.

Now $\bigcup_{\alpha} U_{\alpha} \subset \bigcup_{\alpha} int * (cl(int * (U_{\alpha})))$ and so $\bigcup_{\alpha} U_{\alpha} \subset int^*(\bigcup_{\alpha} cl(int * (U_{\alpha})))$ since

 $\bigcup_{\alpha} int(A_{\alpha}) \subset int(\bigcup_{\alpha} A_{\alpha})$. Further, $\bigcup_{\alpha} cl(A_{\alpha}) \subset cl(\bigcup_{\alpha} A_{\alpha})$ implies that

 $\bigcup_{\alpha} U_{\alpha} \subset \operatorname{int}^*(cl(\bigcup_{\alpha} int * (U_{\alpha})))$ and so

 $\bigcup_{\alpha} U_{\alpha} \subset \operatorname{int}^*(cl(int * (\bigcup_{\alpha} (U_{\alpha})))).$

Hence $\bigcup_{\alpha} U_{\alpha}$ is w- α - \mathfrak{T} -open subset of X.

(b)Let U be w- α - \mathfrak{T} -open subset of X and V be τ -open subset of X. Then U \subset int*(cl(int*(U))). Now

 $U \cap V \subset int^*(cl(int^*(U))) \cap V = int^*(cl(int^*(U)) \cap int(V))$ since V is τ -open subset of X and so

 $U \cap V \subset int^*(cl(int^*(U) \cap int(V)))$ using Lemma 2.3 .But $int^*(A) \cap int^*(B) = int^*(A \cap B)$. Therefore,

 $U \cap V \subset int^*(cl(int^*(U \cap V))).$

Hence $U \cap V$ is w- α - \mathfrak{T} -open.

Next we introduce w- α - \mathfrak{T} -closed sets.

Definition 2.10: Let (X,τ,\mathfrak{T}) be an ideal space. Then a subset F of X is called w- α - \mathfrak{T} -closed if its complement X-F is w-semi- \mathfrak{T} -open.

Theorem 2.11: If a subset F of an ideal space (X,τ,\mathfrak{T}) is w-semi- \mathfrak{T} -closed then prove that $cl^*(int(cl^*(F) \subset F)$.

Proof: Let F be any w-α-ℑ-closed subset of X. Then X-F is w-α-ℑ-open subset of X. Therefore,

 $X-F \subset int^*(cl(int^*(X-F))) = int^*(cl(X-cl^*(F)))$ using $int^*(X-A) = X-cl^*(A)$ or $X-int^*(A) = cl^*(X-A)$ for any subset A of X and so $X-F \subset int^*(X-int(cl^*(F)))$

$$=$$
 X-cl*(int(cl*(F)))

Therefore, $cl^*(int(cl^*(F))) \subset F$.

Definition 2.12: Let (X,τ,\mathfrak{T}) and (Y,σ,\mathcal{J}) with $\mathcal{J}=f(\mathfrak{T})$ be two topological spaces. Then a map $f: (X,\tau,\mathfrak{T}) \to (Y,\sigma,\mathcal{J})$ is said to be w- α - \mathfrak{T} -open(closed) if image of every open(closed) set in X is w- α - \mathfrak{T} -open(closed) in Y.

i.e. f is w- α - \mathfrak{T} -open(closed) if $\forall G \in \tau$, f(G) is w- α - \mathfrak{T} -open(closed) subset of Y.

Theorem 2.13: Let (X,τ,\mathfrak{T}) and (Y,σ,\mathcal{J}) be two ideal topological spaces and $f: (X,\tau,\mathfrak{T}) \to (Y,\sigma,\mathcal{J})$ be any map. Then prove that the following are equivalent:

- a) f is w- α - \mathfrak{T} -open map.
- b) For each $x \in X$ and any open set U containing x, there exist w- α - \mathfrak{T} -open subset V in Y containing f(x) such that $V \subset f(U)$.

Proof: Firstly, let f be w- α - \mathfrak{T} -open map. Let x \in X be any element and U be any open set in X containing x. This implies that there exist basic open set say B such that x \in B \subset U. Now f is w- α - \mathfrak{T} -open map and B is open subset of X implies that f(B) is w- α - \mathfrak{T} -open subset of Y containing f(x). Let V = f(B) then B \subset U implies that f(B) \subset f(U). Hence there exist w- α - \mathfrak{T} -open subset V of Y containing f(x) such that V \subset f(U).

Conversely, let G be any open subset in X. We have to prove that f(G) is w- α - \mathfrak{T} -open subset of Y.

Now there can be two possibilities:

Case(i) If $G = \phi$, then $f(G) = \phi$. Hence we have nothing to prove.

Case(ii) If $G \neq \phi$, then $f(G) \neq \phi$. Let $y \in f(G)$ and so there exist $x \in G$ such that y = f(x). Now, G is the open subset of X containing x so there exist w- α - \mathfrak{T} -open subset V in Y containing f(x) such that $V \subset f(G)$.

So, $\forall y \in f(G)$ there is w- α - \mathfrak{T} -open subset V in Y containing y such that $y \in V \subset f(G)$. This implies that f(G) is union of w- α - \mathfrak{T} -open subsets of Y. Hence f(G) is w- α - \mathfrak{T} -open subset of Y.

Hence f is w- α - \mathfrak{T} -open map.

REFERENCES

[1] A.Acikgoz, T.Noiri and S.Yuksel, *On* α - \mathfrak{T} -continuous and α - \mathfrak{T} -open functions, Acta Math. Hunger., 105 (2004), 27-37.

[2] J.Dontchev, On pre-I-open sets and a decomposition of I-continuity, Banyan Math. J., 2(1996).

[3] E. Hatir and T.Noiri, *On decompositions of continuity via idealization*, Acta Math. Hunger., 96 (2002), 341-349.

[4] K. Kuratowski, Topology, volume I, Academic Press, New York, 1966.

[5] R. Vaidyanathaswamy, The localisation Theory in Set Topology, Proc. Indian Acad. Sci., 20(1945), 51-61.

[6] ------, Set Topology, Chelsea Publishing Company, New York, 1946.