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ABSTRACT 

Steiner triple systems (STSs) with subsystems of order 7 are classified. The steiner systems for order 19, 21 and 

23 has been classified. We need to find the total classification of the STS systems. In a Steiner triple system of 

order v, STS (v), a set of three lines intersecting pair wise in three distinct points is called a triangle. A set of 

lines containing no triangle is called triangle-free. The minimum number of triangle-free sets required to 

partition the lines of a Steiner triple system S, is called the triangle chromatic index of S.  

A method of constructing Steiner triple systems has been proposed. The basic theory that contains definition, 

lemmas of decomposable of some complete graphs has been described. A theorem concerning construction of 

Steiner triple systems has been proved. The entire procedure of constructing Steiner triple systems of order 19, 

21, 23 has been presented. 

 

I.INTRODUCTION  

A Steiner triple system [3] of order is a set of 3-element subsets, called blocks, of a -set of points, such that 

every pair of points occurs in exactly one block. For an STS ( ), standard counting arguments show that each 

point must occur in exactly  blocks and that the triple system consists of 

exactly  blocks where and  are integers we get necessary conditions for the existence of an 

STS ( ). 

For anSTS( ) exists if and only if either or . Two STS are isomorphic if 

there exists a bijection between the point sets that maps blocks onto blocks; such a bijection is an isomorphism. 

An auto-morphism[5][17] of a triple system is an isomorphism of the triple system onto itself. The auto-

morphism group of the triple system consists of all of its automorphisms. The number of pair wise non-

isomorphic STS ( ) is denoted by N( ).  N( ) grows exponentially as proved .The first few nonzero values of 

the function N( ) are . 
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Theoretically, assuming a collection of Q objects, on average at least log2Q bits are required to uniquely 

represent (identify) an object in the collection. Concatenating the compressed representations of all the objects, 

at least Qlog2Q bits, or approximately 46 gigabytes for Q = N(19), are required. 

 

II. MATERIALS & METHODS  

2.1. STS of order 19 [19]  

Let  be an STS ( ). A subsystem of order  (denoted sub-STS ( ) is a pair  which is an STS( ) in 

its own right. An STS (19) can contain subsystems of orders 1 or 3 (trivially), 7, or 9. There are at least 2450 

non-isomorphic STS (19) which contain 3 sub-STS(7) intersecting in a point. It is shown that there are exactly 

284457 non-isomorphic STS (19) containing sub-STS (9).  

As each STS (19) was generated, we stored the relevant information on tape: the random seed used to generate 

the system, the two invariants, and two Boolean flags indicating the presence of subsystems.  

2.2. Enumeration of  STS(19)  with the sub-order of system 9  

There are exactly 284457 non-isomorphic STS (19) which contain a sub-STS(9)[19], and at least 2111230 

which do not have isomorphs. The estimated population is the solution N to the equation 

. This equation can easily be solved by Newton's method, giving N = 3.54 X 

108. 

 Although N is huge, it is probably too low, for two reasons. First, the population we are estimating is that of 

invariants, and not non-isomorphic STS (19). It can happen, and does, that non-isomorphic STS (19) have the 

same invariants. 

We know of no way to estimate the probability of this occurring. Second, we construct STS (19) by means of a 

pseudo-random number generator with a period of 230. So our population is restricted to those 230(= 109) STS 

(19) which can be constructed from the particular pseudo-random number generator we used. 

We can obtain an estimate in another way, by considering the STS (19) with a sub-STS(9).We have noted that 

there are exactly 284457 such STS seeds. Of the 2117600 seeds of STS we constructed, 46 out of those STS 

seeds, contained a sub-STS (9). Taking ratios, we get an estimate of N = 284457/46 X 2117600 = 1.309 X 109. 

It may be that our hill-climbing algorithm is less likely to produce STS (19) containing sub-STS (9) than a truly 

random algorithm; so this estimate may be too high.  

III.CALCULATION PARAMETERS 

• The point set  is used for all STS( ), and the vertex set is used for all graphs of 

order  

• The symmetric group on is denoted by . The auto-morphism group of a graph G is denoted by 

Aut ( ) 

• Similarly, the auto-morphism group of a triple system B is denoted by Aut( ) 
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• Block Graphs (Linear Graphs) : A graph whose vertices are in one-to-one correspondence with the blocks of 

triple system, with two vertices joined by an edge if and only if the corresponding blocks have nonempty 

intersections. 

 

IV. PASCH CONFIGURATION 

• A Pasch configuration (or fragment or quadrilateral) in an STS is a set of four blocks and six points of the form 

 

• An STS is said to be anti-Pasch if it does not contain a Pasch configuration 

• We define collections of the blocks where a pair of distinct collections of blocks is said to be mutually 

balanced if each element subset of the base set  contained in precisely the same number of blocks of 

as of  .Each collection   is then referred to as a trade.  

• The Pasch configuration is the smallest trade that can occur in a Steiner triple system. If  is the collection 

then, by replacing each triple with its complement, a collection , 

is obtained which contains precisely the same pairs as . This transformation is 

known as a Pasch switch, and when applied to a Steiner triple system yields another, usually non-isomorphic, 

Steiner triple system 

V.THEORMS OF GRAPHS: STS 

• Theorem -1:  A Regular Graph with vertices and degree  is said to be strongly regular graph[17][20] if it has 

two integers , having two adjacent neighbors  ,and two non-adjacent vertices having common 

neighbors represented as srg( .  

• Block graph of an STS( ) is a strong regular graph:   

The converse of this theorem holds on the condition that v is large enough. 

This result was obtained by Bose, for .The following theorem is one of the central building blocks of our 

classification approach 

• Theorem – 2: For every , every STS ( ) can be reconstructed up to isomorphism from its block 

graph[18]  

The proof of Theorem contains an explicit algorithm [19] for constructing an STS from a strongly regular graph. 

We do not, however, need such an algorithm here, since every such graph will be explicitly constructed from an 

STS, and the transformation between these objects is therefore known 

• Theorem – 3: For every  . Two STS ( ) are isomorphic if and only if their block graphs are isomorphic  

[18]  

• Theorem-4: For , a block graph of a contains exactly -cliques. The vertices of an -clique in 

the block graph clearly correspond to a set of  blocks with pair wise nonempty intersection[17]   
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A short case-by-case analysis shows that a set of blocks with pair wise nonempty intersection in an STS ( ) has 

sizeatmost 7 unless the blocks share a common point. Since each point occurs in  blocks, and no two blocks 

contain the same point pair, there are exactly sets of  blocks with pair wise nonempty intersection when , 

that is,  

• Theorem-5: For , the auto-morphism group of an STS( )and the auto-morphism group of a 

corresponding block graph are isomorphic. Label the blocks of an STS( ) and consider the associated block 

graph G. Clearly, the block automorphism group of the STS is a sub group of Aut(G) [12]  

• Theorem-6: Each block of an STS( )occurs in exactly sets of four blocks that 

have pair wise non-empty intersection but do not form a pasch configuration  [8] 

• For , the function  is well defined and constitutes a vertex invariant for the set of all block graphs 

derived from STS( ) 

VI. CONSTRUCTION OF STS 

• STAGE-I :Preprocessing stage in which the seeds for the main search are determined 

• STAGE-II: The second stage consists of determining all extensions of each seed to an STS(19), STS(21), 

STS(23) and rejecting isomorphs 

• The correspondence between Steiner triple systems and strongly regular graphs given by Theorem is very 

useful from an algorithmic point of view since we can alternate between representations and use the best 

representation for the task at hand. The core of our algorithm is an efficient exact cover algorithm for 

constructing STS (19).  

• Isomorph-free generation is achieved using the block graph representation and nauty supplemented with the 

Pasch configuration vertex invariant.  

• The details of our approach are as follows. The construction process has two stages. The first stage is a 

preprocessing stage in which the seeds for the main search are determined. The second stage consists of 

determining all extensions of each seed to an STS(19) and rejecting isomorphs 

The problem of finding all extensions of a seed sub-design to an STS(19) is that of finding all solutions to an 

instance of exact cover. In the exact cover problem, we are given a set and a collection of its subsets; the task is 

to cover the set with given subsets so that each element of the set is covered exactly once 

• In the preprocessing stage, we fix the first block, .Construct all pair wise non-isomorphic designs 

consisting of 3-element blocks that intersect the first block so that the total number of blocks is 25 ( = 9 for an 

STS(19)) and no pair in occurs in more than one block. 

• We generate a table for all possible incident matrix up to isomorphism 

• The structure of seeds needs to determine two parts of the sub-seed design: A and B 

• Part A can be completed with combinatorial arguments 
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• Part-B can be calculated by carrying out isomorphic rejection in each matix for Part-A 

• For each completion we perform isomorph rejection against a stored collection of orbit representatives 

•  Each design is encoded as a vertex-colored bipartite graph in which vertices of one color correspond to the 

points, vertices of another color correspond to the blocks, and edges encode the incidence relation between 

points and blocks 

• Pair-wise non-isomorphic m-block seed sub-designs are obtained in this way 

• The problem of finding all extensions of a seed sub-design to an STS(19) is that of finding all solutions to an 

instance of exact cover 

• In the exact cover problem, we are given a set and a collection of its subsets; the task is to cover the set with 

given subsets so that each element of the set is covered exactly once 

• We combine the data of complete search with previous results to calculate number of pair-wise non-

isomorphic STS(19) 

• First, we take the representatives from the isomorphism classes of STS(19) 

• Orbit-stabilizer theorem gives total number of STS(19) 

VII.CONSTRUCTING AND EXTENDING SEEDS 

In the preprocessing stage, we construct all pair wise non-isomorphic designs consisting of 

3-element blocks that intersect block so that the total number of blocks is 25. 

A backtrack search with isomorph rejection is carried out. Actually, the A part can be completed up to 

isomorphism using combinatorial arguments; there are only seven such completions. From left to right these 

correspond to the seven partitions, 4 + 4 + 4 + 4; 4 + 4 + 8; 4 + 6 + 6; 4 + 12; 6 + 10; 8 + 8; 16; of 16 into even 

integers greater than or equal to 4.  

Each completion corresponds to a 1-factor of the complete graph K16 that is disjoint from the 1-factor in 

columns. The union of two such 1-factors is a 2-regular graph consisting of even-length cycles only; up to 

isomorphism these correspond to the partitions above 

For each completion we perform isomorph rejection with nautyagainst a stored collection of orbit 

representatives. Each design is encoded as a vertex-colored bipartite graph in which vertices of one color 

correspond to the points, vertices of another color correspond to the blocks, and edges encode the incidence 

relation between points and blocks .In total, 14;648 pair wise non-isomorphic 25-block seed sub-designs are 

obtained in this way. 

Then the orbit-stabilizer theorem gives as the total number of   STS(19),  STS(21), STS(23). 
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Again, the orbit-stabilizer theorem can be used to get the total number of STS(19), STS(21),STS(23) . Since we 

know the number of STS(19) for  and all values  are known after the search,  it is straightforward to 

determine  the number of STS(19) ,STS(21),STS(23) with trivial auto-morphism group. 

 

VIII. ISOMPORPH REJECTION 

The most involved part of the algorithm is the elimination of isomorphic STS(19) , STS(21),STS(23) from 

consideration. There are three issues that need to be addressed. 

First, the main search must be conducted in parallel because of the considerable resource requirements. 

This presents a difficulty since the parallel runs should preferably be independent of each other, whereby no 

comparisons between isomorphism class representatives encountered in distinct runs are allowed. Second, the 

search is to be conducted in part on computers that do not have enough main memory to store the millions of 

isomorphism class representatives potentially encountered as extensions of a single seed sub-design. 

Third, isomorphism testing must be fast since there are in the order of, as we now know, tested for isomorphism. 

All of the above difficulties are essentially solved by a recent algorithm framework for iso-morph-free 

exhaustive generation . 

Our basic isomorph rejection strategy is to use nautyto compute the canonical labeling and automorphism orbits 

of the block graph of a generated STS(19), STS(21), STS23). To enable parallelization we must guarantee that 

algorithm runs performed on different seeds sub-designs do not output isomorphic STS(19).  

This can be accomplished by using the output of nautyto test that a generated STS(19) originates from the 

correct parent seed sub design. 

Theorem 7:  Let sub-seeds B and B0 be two generated STS(19) ,STS(21),STS(23) that pass the test. . If B and 

B0 are isomorphic, then they have been constructed by extending the same seed sub design S [19] 

Moreover, there exists an automorphism of S that is an isomorphism of B onto B0 

Theorem 8:  For every isomorphism[12] class of STS(19), there exists an STS(19) that is an extension of a seed 

sub design and that passes the test   

 This can be extended to STS(21) and STS(23). 

We must still perform isomorph rejection on those STS (19) that have been generated from the same seed sub-

design. If the automorphism group of the seed sub-design is large, then the further test we employ is simply a 

hash table query to see whether the canonically labeled block graph 

 

IX. BLOCK CONSTRUCTION OF STS 

A Steiner Triple System, denoted by STS( ), is a pair consisting of a set S with  elements, and a set T 

consisting of triples of S (called blocks) such that every pair of elements of S appear together in a unique triple 

of T. 

9.1. Quasi-groups 

A Quasigroup is a set S together with a binary operation ( ) such that: 

1. The operation is closed (i.e., a b ) 



 

 

24 | P a g e  

 

2. Given a, b the equations 

i) a x = b and 

ii) y a = b 

have unique solutions for x and y. 

A simple example of a finite quasigroup is given by the set with the operation  define by a  b = 

2a+b+1 where the operations on the right are the usual multiplication and addition modulo 3. 

9.2. Latin Squares and Quasi-groups 

Theorem 9: The multiplication table of a quasigroup[8] is a Latin square  

Where the entry which occurs in the r-th row and s-th column is the product   of the elements and . If 

the same entry occured twice in the -th row, say in the -th and -th columns so that =  = b , have two 

solutions to the equation , in contradiction to the quasi group axiom. Similarly, if the same entry 

occurred twice in the s-th column, we would have two solutions to the equation  for some . We 

conclude that each element of the quasigroup occurs exactly once in each row and column, and so the 

unbordered multiplication table (which is an array) is a latin square 

Theorem 10: There is no commutative idempotent latinsquare[8] of even Order    

 For any , there exists a commutative idempotent latin square of order . 

 

X. BOSE CONSTRUCTION 

The Bose construction of an STS for any natural number , utilizes a commutative idempotent 

quasi-group of order . The set S consists of the ordered pairs of and the triples T 

are of two types: 

Type 1:  

Type 2:  

There are  triples of type 1 and  triples of type 2.  

Thus,  

Let  and  be distinct elements of . If then this pair is in a triple of type 1. 

If  , the pair is in a triple of type 2. Now, either  or In the first case, let x be the unique 

solution of in Q. The triple containing the pair is thus . In the 

second case, let y be the unique solution of  in Q. The triple is then  

 

XI. FINAL CONSTRUCTION 

This construction of an STS ( ) starts with a set S consisting of the 6  ordered pairs of Q where 

(Q, ) is a commutative half-idempotent quasi-group of order 2  is represented as . 

To describe the triples we assume that the quasi-group Q has symbols . The triples are then: 
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Type 1:  

Type 2:   

Type 3:   

Suppose and are a pair of elements of S. 

The triple
 containing the pair is thus In the second case, let y be the unique solution of y a 

= a in Q. Again, the triple is then 
. 

 

 

XII. RESULTS & DISCUSSION 

The below are the pairs of the non-cyclic points representing the graphical space sample points for the graphical 

construction of the non-cyclic group of the seeds obtained through the isomorphic rejection and orbit stabilizer 

theorem.
 

STS (19) – 57
 

STS (21) -   70
 

STS (23) -   64    

S.No. STS(19) STS(21) STS(23) 

              1 

              2 

              3 

              4 

              5 

              6 

              7 

              8 

              9 

              10 

              11 

              12 

              13 

              14 

              15 

              16 

              17 

              18 

              19 

10 12 16 

10 13 18 

 1 11 12 

11 13 19 

12 14 17 

 1 13 17 

14 15 19 

 1 15 18 

17 18 19 

 2 10 11 

 2 12 13 

 2 14 18 

 2 16 19 

2  3  5 

1  2  4 

2  6  8 

2  7 15 

2  9 17 

 3 13 15 

10 12 21 

10 13 16 

10 14 17 

 1 10 20 

 1 11 12 

11 13 14 

12 15 20 

 1 13 19 

 1 14 15 

14 18 19 

15 17 21 

 1 16 17 

16 18 21 

19 20 21 

 2 11 21 

 2 12 13 

 2 14 20 

 2 15 16 

 2 17 18 

21 10 2 

23 10 5 

4 9 2 

10 13 16 

10 14 17 

 1 10 20 

 1 11 12 

11 13 14 

12 15 20 

 1 13 19 

 1 14 15 

14 18 19 

15 17 21 

 1 16 17 

16 18 21 

19 20 21 

 2 11 21 

 2 12 13 

 2 14 20 
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              20 

              21 

              22 

              23 

              24 

              25 

              26 

              27 

              28 

              29 

              30 

              31 

              32 

              33 

              34 

              35 

              36 

              37 

              38 

              39 

              40 

              41 

              42 

              43 

              44 

              45 

               46 

               47 

               48 

               49 

               50 

               51 

               52 

               53 

 3 16 17 

1  3 19 

3  4 18 

3  6 10 

3  7 12 

3  8 14 

3  9 11 

 4 10 14 

 4 11 15 

 4 13 16 

4  5 17 

4  6  7 

4  8 19 

4  9 12 

 5 10 19 

 5 11 14 

 5 12 15 

 5 16 18 

5  6 13 

1  5  7 

5  8  9 

 6 11 16 

 6 12 19 

1  6 14 

 6 15 17 

6  9 18 

 7 10 17 

 7 11 18 

 7 14 16 

7  8 13 

7  9 19 

 8 10 15 

 8 11 17 

 8 12 18 

2  3  5 

1  2  4 

2  6 19 

2  7  8 

2  9 10 

 3 10 15 

 3 11 16 

 3 12 14 

 3 17 19 

 3 18 20 

1  3 21 

3  4 13 

3  6  8 

3  7  9 

 4 10 19 

 4 11 20 

 4 15 18 

4  5 17 

4  6 21 

4  7 14 

4  8 16 

4  9 12 

 5 11 19 

 5 12 16 

 5 13 20 

1  5 18 

5  6 10 

5  7 21 

5  8 14 

5  9 15 

 6 11 17 

 6 12 18 

 6 13 15 

 6 14 16 

 2 15 16 

 2 17 18 

2  3  5 

1  2  4 

2  6 19 

2  7  8 

2  9 10 

 3 10 15 

 3 11 16 

 3 12 14 

 3 17 19 

 3 18 20 

1  3 21 

3  4 13 

3  6  8 

3  7  9 

 4 10 19 

 4 11 20 

 4 15 18 

4  5 17 

4  6 21 

4  7 14 

4  8 16 

4  9 12 

 5 11 19 

 5 12 16 

 5 13 20 

1  5 18 

5  6 10 

5  7 21 

5  8 14 

5  9 15 

 6 11 17 

 6 12 18 
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               54 

               55 

               56 

               57 

               58 

               59 

               60 

               61 

               62 

               63 

               64 

               65 

               66 

               67 

               68 

               69 

               70 

                 

 

1  8 16 

1  9 10 

 9 13 14 

 9 15 16 

 

1  6  7 

6  9 20 

 7 10 11 

 7 12 17 

 7 13 18 

 7 15 19 

 7 16 20 

 8 10 18 

 8 11 15 

 8 12 19 

 8 13 21 

 8 17 20 

1  8  9 

 9 11 18 

 9 13 17 

 9 14 21 

 9 16 19 

 

 6 13 15 

 6 14 16 

1  6  7 

6  9 20 

 7 10 11 

 7 12 17 

 7 13 18 

 7 15 19 

 7 16 20 

21 19 11 

23 9 2 
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