International Journal of Advance Research in Science and Engineering Volume No.06, Special Issue No.(03), December 2017 IJARSE ISSN: 2319-8354

On θ_I Kernel of a set

Nitakshi Goyal

Department of Mathematics, Punjabi University Patiala, Punjab(India).

ABSTRACT

In this paper we will introduce θ_{I} kernel of a set and give its characterizations. Also Examples are given throughout the paper.

Key Words and phrases: S_{I_i} θ_I -closed.

2000 **MSC**: 54A05, 54D10, 54D30.

I.INTRODUCTION

In [2], Csàszàr, introduced S₁ and S₂ spaces and discussed some properties of these spaces and in [3], Janković gave various characterizations of S₁ and S₂ spaces using the θ -closure of a set and θ -Kernel of a set. On the other hand separation axioms with respect to an ideal and various properties and characterizations were also discussed by many authors. Ideals in topological spaces were introduced by Kuratowski[4] and further studied by Vaidyanathaswamy[5]. Corresponding to an ideal a new topology $\tau^*(\mathfrak{T}, \tau)$ called the *-topology was given which is generally finer than the original topology having the kuratowski closure operator $cl^*(A) = A \cup A^*(\mathfrak{T}, \tau)[6]$, where $A^*(\mathfrak{T}, \tau) = \{x \in X : U \cap A \notin \mathfrak{T} \text{ for } \tau^*(\mathfrak{T}, \tau).$

The following section contains some definitions and results that will be used in our further sections.

Definition 1.1.[4]: Let (X, τ) be a topological space. An ideal \mathfrak{T} on X is a collection of non-empty subsets of X such that (a) $\phi \in \mathfrak{T}$ (b) $A \in \mathfrak{T}$ and $B \in \mathfrak{T}$ implies $A \cup B \in \mathfrak{T}$ (c) $B \in \mathfrak{T}$ and $A \subset B$ implies $A \in \mathfrak{T}$.

Definition 1.2.[2]: A topological space (X, τ) is said to be S₁ space if for every pair of distinct points x and y, whenever one of them has a open set not containing the other then the other also has a open set not containing the other.

Definition 1.3.[1]: Let (X,τ,\mathfrak{T}) be an ideal space. Then for any subset A of X, a point x is said to be in the θ_I closure of A if for every open subset U of x in X, $cl^*(U) \cap A \neq \phi$. The collection of all such points is denoted by $cl_{\theta_I}(A)$. Also A is said to be θ_I closed if $cl_{\theta_I}(A) = A$.

Definition 1.4.[3]: Let (X,τ) be a topological space and $x \in X$ be any element. Then

a) Ker{x} = \bigcap {G : G $\in \tau(x)$ }, where $\tau(x)$ denotes the collection of all open subsets of x

International Journal of Advance Research in Science and Engineering Volume No.06, Special Issue No.(03), December 2017 IJARSE ISSN: 2319-8354

i.e. Ker{x} = { $y \in X | cl{y} \cap {x} \neq \phi$ }.

(b) $Ker_{\theta}(A) = \{ x \in X \mid cl_{\theta}(x) \cap A \neq \phi \}$

II.RESULTS

We will begin by defining the θ -Kernel of a set.

Definition 2.1: Let (X, τ, \mathfrak{T}) be an ideal space and A be any subset of X. Then

 $Ker_{\theta_i}(A) = \{ x \in X \mid cl_{\theta_i}(x) \cap A \neq \phi \}.$

Remark 2.2: Since, we know that $cl^*(A) \subset cl(A)$ for any subset A of X. So, by definition it is obvious that $cl_{\theta_i}(A) \subset cl_{\theta}(A)$ for any subset A of X. Hence it follows that $Ker_{\theta_i}(A) \subset Ker_{\theta}(A)$ for any subset A of X. But the following Example shows that the converse is not true.

Example 2.3: Let X={a,b,c}, $\tau = \{\phi, \{b\}, \{a,b\}, X\}$ and $\mathfrak{T} = \{\phi, \{a\}, \{b\}, \{a,b\}\}$ and so $\tau^* = \mathfrak{P}(X)$. Then

 $Ker_{\theta_t}(b) = \{b\} \text{ and } Ker_{\theta}(b) = \{a,b,c\}.$

Hence $Ker_{\theta}(b) \not\subset Ker_{\theta}(b)$.

Theorem 2.4: Let (X,τ,\mathfrak{T}) be an ideal space. Then prove that the following holds:

- (a) For each $A \subset X$, $A \subset Ker(A) \subset Ker_{\theta_i}(A)$
- (b) If $A \subset B \subset X$ then $Ker_{\theta_i}(A) \subset Ker_{\theta_i}(B)$
- (c) If A, B \subset X then $Ker_{\theta_i}(A \cup B) = Ker_{\theta_i}(A) \cup Ker_{\theta_i}(B)$
- (d) If X is S₁ space then prove that $Ker_{\theta_i}(A) \subset cl_{\theta_i}(A)$.
- (e) If X is S₁ space and A is any compact subset of X then $cl_{\theta_i}(A) \subset Ker_{\theta_i}(A)$.

Proof: (a) Let A be any subset of X. Then $\forall x \in A, x \in cl\{x\}$ implies $cl\{x\} \cap A \neq \phi$.

Therefore, $A \subset \ker(A)$. Also $\operatorname{cl}_{x} \subset \operatorname{cl}_{\theta_{t}}(x)$ implies that $\operatorname{Ker}(A) \subset \operatorname{Ker}_{\theta_{t}}(A)$.

Hence $A \subset \text{Ker}(A) \subset Ker_{\theta_{i}}(A)$.

(b) Let A,B be two subsets of X such that $A \subset B$. Then $cl_{\theta_i}(A) \subset cl_{\theta_i}(B)$ implies that $Ker_{\theta_i}(A) \subset Ker_{\theta_i}(B)$. Hence (b) holds.

International Journal of Advance Research in Science and Engineering Volume No.06, Special Issue No.(03), December 2017 Www.ijarse.com

(c) Let A,B be two subsets of X. Then A \subset AUB and B \subset AUB, so by (b) $Ker_{\theta_1}(A) \subset Ker_{\theta_1}(A \cup B)$ and $Ker_{\theta_1}(B) \subset Ker_{\theta_1}(A \cup B)$. Therefore, we have $Ker_{\theta_1}(A) \cup Ker_{\theta_1}(B) \subset Ker_{\theta_1}(A \cup B)$. Conversely, let x $\in Ker_{\theta_1}(A \cup B)$ implies that $cl_{\theta_1}(x) \cap (A \cup B) \neq \phi$. So $(cl_{\theta_1}(x) \cap A) \cup (cl_{\theta_1}(x) \cap B) \neq \phi$. This implies that either $cl_{\theta_1}(x) \cap A \neq \phi$ or $cl_{\theta_1}(x) \cap B \neq \phi$ and so either x $\in Ker_{\theta_1}(A)$ or x $\in Ker_{\theta_1}(B)$.

Therefore, $\mathbf{x} \in Ker_{\theta_i}(A) \cup Ker_{\theta_i}(B)$. Hence $Ker_{\theta_i}(A) \cup Ker_{\theta_i}(B) = Ker_{\theta_i}(A \cup B)$. Hence (c) holds.

(d) Let X be S₁ space and A be any subset of X. Let $y \notin cl_{\theta_l}(A)$. We have to prove that $y \notin Ker_{\theta_l}(A)$ i.e. we have to prove that $cl_{\theta_l}(y) \cap A = \phi$. Let $z \in A$ then we have to prove that $z \notin cl_{\theta_l}(y)$. Now $y \notin cl_{\theta_l}(A)$ implies that there exist open set U_y containing y such that $cl^*(U_y) \cap A = \phi$. Further, $z \in A$ and $cl^*(U_y) \cap A = \phi$ implies that $z \notin cl^*(U_y)$ and so $z \notin U_y$ and $z \notin U_y^*$. Now, $z \notin U_y$ implies that y has a open set U_y not containing z and so X is S₁ implies that z has a open set say U_z not containing y. And $z \notin U_y^*$ implies that there exist open set V_z containing z such that $V_z \cap U_y \in \mathfrak{T}$. Consider $H_z = U_z \cap V_z$. Then H_z is open set containing z but not y. Also $H_z \cap U_y \in \mathfrak{T}$. Therefore, $y \notin H_z$ and $y \notin H_z^*$ implies that $y \notin cl^*(H_z)$ i.e.

 $cl^{*}(H_z) \cap \{y\} = \phi$ and so $z \notin cl_{\theta_r}(y)$. Hence $z \notin Ker_{\theta_r}(A)$.

(e): Let A be any compact subset of X and X is S₁. We have to prove that $cl_{\theta_1}(A) \subset Ker_{\theta_1}(A)$. Let $y \notin A$

 $Ker_{\theta_1}(A)$. Then $cl_{\theta_1}(y) \cap A = \phi$. This implies that $\forall z \in A, z \notin cl_{\theta_1}(y)$ and so $\forall z \in A$ there exist U_z such that $cl^*(U_z) \cap \{y\} = \phi$. Therefore, $y \notin U_z$ and $y \notin U_z^*$. Hence $\forall z \in A$, there exist open set V_z containing y such that $V_z \cap U_z \in \mathfrak{T}$. Further, z has a open set U_z not containing y and so X is S_1 implies that y has a open set say G_z not containing z. Consider $H_z = G_z \cap V_z$. Then $\forall z \in A$ H_z is open set containing y but not z and U_z is open set containing z such that $H_z \cap U_z \in \mathfrak{T}$. Further, $A \subset \bigcup_{z \in A} \bigcup_z$ and A is compact implies that there exist finite subset A_0 of A such that $A \subset \bigcup_{z \in A_0} \bigcup_z$. Let $U = \bigcup_{z \in A_0} \bigcup_z$ and $V = \bigcap_{z \in A_0} H_z$ then

 $U \cap V \in \mathfrak{T}$. Now, since $\forall z \in A, z \notin H_z$. This implies that $V \cap A = \phi$. Also $U \cap V \in \mathfrak{T}$ implies that $V^* \cap U = \phi$ and so $A \subset U$ implies that $V^* \cap A = \phi$. Hence $cl^*(V) \cap A = \phi$ implies that $y \notin cl_{\theta_c}(A)$.

Hence $cl_{\theta_t}(A) \subset Ker_{\theta_t}(A)$.

If X is S₁ and A be compact subset of X then $cl_{\theta_i}(A) = Ker_{\theta_i}(A)$.

The following Example shows that the result is not true if the space is not S₁.

Example 2.5: Let X={a,b,c}, $\tau = \{\phi, \{a\}, \{b\}, \{a,b\}, X\}$ and $\mathfrak{T} = \{\phi, \{a\}, \{b\}, \{a,b\}\}$ and so $\tau^* = \wp(X)$. Then it can be seen easily that X is not S₁. Since, 'a' has a open set {a} not containing 'c' but 'c' does not have any open set not containing 'a'. Also $cl_{\theta_l}(a) = \{a,c\}$ and $Ker_{\theta_l}(a) = \{a\}$ and so $cl_{\theta_l}(a) \neq Ker_{\theta_l}(a)$. And

 $cl_{\theta_{I}}(c) = \{c\} \text{ and } Ker_{\theta_{I}}(c) = \{a,b,c\} \text{ and so } Ker_{\theta_{I}}(c) \not\subset cl_{\theta_{I}}(c).$

International Journal of Advance Research in Science and Engineering Volume No.06, Special Issue No.(03), December 2017 IJARSE ISSN: 2319-8354

REFERENCES

- [1] A. Al-omari and T.Noiri, On $\theta_{(I,J)}$ -continuous functions, Rend. Istit. Mat. Univ. Trieste, 44(2012), 399-411.
- [2] A. Csàszàr, General Topology, A. Hilger Ltd., Bristol, 1978.
- [3] D. Janković, On some Separation axioms and θ -closure, Mat. Vesnik, 32(4) 1980, 439-449.
- [4] K. Kuratowski, Topology, volume I, Academic Press, New York, 1966.
- [5] R. Vaidyanathaswamy, The localisation Theory in Set Topology, Proc. Indian Acad. Sci., 20(1945), 51-61.
- [6] -----, Set Topology, Chelsea Publishing Company, New York, 1946.