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ABSTRACT 

In this paper, we propose to obtain the Bayesian estimators of unknown shape parameter of a three parameter 

generalized exponentiated moment exponential (GEME) distribution, based on non-informative (Quasi and 

Extension of Jeffery’s) priors using three different loss functions. Two real life data sets have been used to 

compare the performance of the estimates under different loss functions. The expression for survival function 

has also been established under Quasi prior and extension of Jeffrey’s prior. 
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I.INTRODUCTION 

The three-parameter generalized exponentiated moment exponential (GEME) distribution will be quite 

effectively used in analyzing several lifetime data, particularly in place of three-parameter gamma distribution, 

three parameter Weibull distribution or three-parameter exponentiated exponential distribution. Moment 

distributions have a vital role in mathematics and statistics, in particular in probability theory, in the perspective 

research related to ecology, reliability, biomedical field, econometrics, survey sampling and in life-testing. 

Hasnain [11] developed an exponentiated moment exponential (EME) distribution and discussed some of its 

important properties.  One of such distributions is the two-parameter weighted exponential distribution 

introduced by Gupta and Kundu [10]. Dara and Ahmad [4] proposed a distribution function of moment 

exponential distribution and developed some basic properties like moments, skewness, kurtosis, moment 

generating function and hazard function. Bayes estimators for the weighted exponential distribution (WED) was 

considered by Farahani and Khorram [8] while S.Dey et al. [15] considered the estimation of the parameters of 

weighted exponential distribution. Recently, Devendera Kumar [5]   obtained the moments and estimation of the 

exponentiated moment exponential distribution. They obtained Bayes estimation under symmetric and 

asymmetric loss functions using gamma prior for both shape and scale parameters. They also compared the 

classical method with Bayesian method through Monte Carlo simulation. 

As given in Zafar Iqbal et al [12], the cumulative distribution function (cdf) of three parameter generalized 

exponentiated moment exponential (GEME) distribution is given by 
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Where  , and
 
  are positive real parameters. The probability density function (pdf) of GEME distribution is 

defined as 
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Here  and are the shape parameters and 
 
is the scale parameter. For 1 , it represents the      EME 

distribution, for 1 , it represents the size biased moment exponential distribution and for 1 , it 

represents the one parameter exponentiated exponential distribution. 

 

II. SURVIVAL FUNCTION 

The branch of statistics that deals with the failure in mechanical systems is called survival analysis. In 

engineering, it is called reliability analysis or reliability theory. In fact the survival function is the probability of 

failure by time y, where y represents survival time. The survival function is given by    
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and the hazard function is  
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III. MAXIMUM LIKELIHOOD ESTIMATION OF (GEME) DISTRIBUTION 

Theorem 3.1: - Let ),...,,( 21 nxxxx  be a random sample of size n having pdf (2); then the maximum 

likelihood estimator of shape parameter , when the parameters  and  are known, is given by 
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Proof: - The likelihood function of the pdf (2) is given by 
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The log likelihood function is given by 











 




























n

i

x

i

n

i

in

i

i

i

e
x

x

xnnnxL
1

1

1

.11ln)1(ln)12(ln2lnln)|(ln 












Differentiating log likelihood function with respect to  and equating to zero, we 

get 
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VI. BAYES ESTIMATOR 

In this section, we now derive the Bayes estimator of the shape parameter   in GEMED when the 

parameters  and  are assumed to be known. We consider two different priors and three different loss 

functions.  

In our presented study, the loss functions used are defined below: 

SELF: Legendre [13] proposed square error loss function and defined it as   

               

2)ˆ(),ˆ(   cl . 

Al-BLF:  The Al-Bayyati
,
s loss function introduced by Al-Bayyati

,
s [1]  which is given by 
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ELF: The entropy loss function established by Dey et al. [7] which is given as  
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4.1 Posterior Density Under Quasi Prior 

The quasi prior is defined as .0,0,
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Combing the quasi prior and the likelihood function (6), then the posterior distribution of parameter  is given 

by 
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which is the density kernel of gamma distribution having parameters anddn )1(1   
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4.2 Bayesian Estimation Under Quasi Prior by Using Different Loss Functions 

Theorem 4.2.1:- Assuming the loss function ),ˆ(1 QSl , the Bayesian estimator of the shape parameter , 

when the parameters  and  are assumed to be known, is of the form  
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Proof: - The risk function of the estimator  under the squared error loss function ),ˆ(1 QSL  is given by the 

formula  
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Minimization of the risk with respect to ̂  gives us the optimal estimator as: 
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Theorem 4.2.2:- Assuming the loss function ),ˆ(1 QEl , the Bayesian estimator of the shape parameter , 

when the parameters  and  are assumed to be known, is of the form  
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Proof: - The risk function of the estimator  under the entropy loss function ),ˆ(1 QEl  is given by the 

formula  
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Minimization of the risk with respect to ̂  gives us the optimal estimator 
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Theorem 4.2.3:- Assuming the loss function ),ˆ(1 QAl , the Bayesian estimator of the shape parameter , 

when the parameters  and  are assumed to be known, is of the form  
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Proof: - The risk function of the estimator  under the Al-Bayyati loss function ),ˆ(1 QAl  is given by the 

formula  
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Minimization of the risk with respect to ̂  gives us the optimal estimator as: 
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Remark 1.1 Replacing 02 c , in (11), we get the Baye’s estimator under square error loss function with quasi 

prior which is same as (9). 

4.3 Posterior density under Extension of Jeffery’s prior 

The extension of Jeffery’s prior is defined as
 Rcg

c 122 ,
1

)(
1

 . 

Combing the extension of Jeffery’s and the likelihood function (6), then the posterior distribution of parameter 

  is given by 
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which is the density kernel of gamma distribution having parameters 
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4.4. Bayesian Estimation under Extension of Jeffery’s Prior Using Different Loss Functions 

Theorem 4.4.1:- Assuming the loss function ),ˆ(
2


EJS

l , the Bayesian estimator of the shape parameter , 

when the parameters  and  are assumed to be known, is of the form  
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Proof: - The risk function of the estimator  under the squared error loss function ),ˆ(
2


EJS

l  is given by the 

formula  
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Minimization of the risk with respect to ̂  gives us the optimal estimator 
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Theorem 4.4.2:- Assuming the loss function ),ˆ(2 EJEl , the Bayesian estimator of the shape parameter , 

when the parameters  and  are assumed to be known, is of the form  
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Proof: - The risk function of the estimator  under the entropy loss function ),ˆ(2 EJEl  is given by the 

formula  
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Minimization of the risk with respect to ̂  gives us the optimal estimator
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Theorem 4.4.3:- Assuming the loss function ),ˆ(2 EJAl , the Bayesian estimator of the shape parameter , 

when the parameters  and  are assumed to be known, is of the form  
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Proof: - The risk function of the estimator  under the entropy loss function ),ˆ(2 EJAl  is given by the 

formula  
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V. ESTIMATOR OF SURVIVAL FUNCTION 

5.1 Estimator Under Quasi Prior of Survival Function 

By using posterior distribution function, we can find the survival function such that   
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5.2 Estimator under Extension Prior Of Survival Function 

By using posterior distribution function, we can find the survival function such that    
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VI. APPLICATIONS 

To compare the performance of the estimates under different loss functions for the generalized exponentiated 

moment exponential distribution, two real data sets are used and analysis performed with the help of R software. 

Data set I: The first data set is given by Gross and Clark [9] which represents the lifetime’s data relating to 

relief times (in minutes) of 20 patients receiving an analgesic. 

 

The data are as follows: 1.1, 1.4, 1.3, 1.7, 1.9, 

1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3.0, 1.7, 2.3, 1.6, and 2.0 
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                                   Table 1: Bayes Risk of  under Quasi prior for Data set I 

SELF: Squared error loss function, ELF: Entropy loss function and ABLF: Al-Bayyati’s loss function. 

Table 2: Bayes Risk of  under Extension of Jeffery’s prior for Data set I 

SELF: Squared error loss function, ELF: Entropy loss function and ABLF: Al-Bayyati’s loss function. 

From Table 1 and 2 shows that squared error loss function provides the minimum posterior risk as compared to 

the other loss functions particularly as C is (0.5) and the prior Extension of Jeffery’s prior provides the less 

posterior risk than Quasi prior. Moreover, when we increase the true value of 

parameters ))0.3,5.2(and)0.2,5.1(),5.1,0.1((),( c and increase the value of )3.1,3.0(cd   

and )4.1,4.0(1 cc  , the Bayes risk of ̂ decreases quite significantly. 

Data set II: The second data set studied by Meeker and Escobar [14], which gives the times of failure and 

running times for a sample of devices from a eld-tracking study of a larger system. At a certain point in time, 30 

units were installed in normal service conditions. Two causes of failure were observed for each unit that failed: 

    d  

SELF ELF ABLF 

5.0c  0.1c  2.01 b  4.01 b  5.02 c  5.02 c  

1.0 1.5 
0.3 0.12806 0.25611 0.44425 0.88851 0.39562 0.16777 

1.3 0.12187 0.24374 0.44452 0.88904 0.36763 0.16361 

1.5 2.0 
0.3 0.07248 0.14496 0.50117 1.00234 0.19423 0.10948 

1.3 0.06898 0.13796 0.50143 1.00287 0.18049 0.10677 

2.0 2.5 
0.3 0.05948 0.11897 0.52092 1.04185 0.15172 0.09440 

1.3 0.05661 0.11323 0.52119 1.04239 0.14099 0.09206 

2.5 3.0 
0.3 0.05711 0.11422 0.52501 1.05001 0.14418 0.09155 

1.3 0.05435 0.10871 0.52527 1.05054 0.13398 0.08929 

    
1c  

SELF ELF ABLF 

5.0c  0.1c  2.01 b  4.01 b  5.02 c  5.02 c  

1.0 1.5 
0.4 0.12496 0.24993 0.44438 0.88877 0.38154 0.16571 

1.4 0.11259 0.22518 0.44498 0.88996 0.32695 0.15718 

1.5 2.0 
0.4 0.07073 0.14146 0.50130 1.00260 0.18732 0.10813 

1.4 0.06373 0.12745 0.50189 1.00379 0.16051 0.10257 

2.0 2.5 
0.4 0.05805 0.11610 0.52105 1.04211 0.146326 0.09324 

1.4 0.05230 0.10461 0.52165 1.04331 0.12538 0.08844 

2.5 3.0 
0.4 0.055732 0.11146 0.52513 1.05027 0.13905 0.09043 

1.4 0.05021 0.10043 0.52573 1.05146 0.11916 0.08578 
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the failure caused by an accumulation of randomly occurring damage from power-line voltage spikes during 

electric storms and failure caused by normal product wear. The times are: 

2.75, 0.13, 1.47, 0.23, 1.81, 0.30, 0.65, 0.10, 3.00, 1.73, 1.06, 3.00, 3.00, 2.12, 3.00, 3.00, 3.00, 0.02, 2.61, 

2.93,0.88, 2.47, 0.28, 1.43, 3.00, 0.23, 3.00, 0.80, 2.45, 2.66. 

Table 3: Bayes Risk of  under Quasi prior for Data set II 

SELF: squared error loss function, ELF: Entropy loss function and ABLF: Al-Bayyati’s loss function. 

Table 4: Bayes Risk of  under Extension of Jeffery’s prior Data set II 

SELF: squared error loss function, ELF: Entropy loss function and ABLF: Al-Bayyati’s loss function. 

From Table 3 and 4 shows that squared error loss function provides the minimum posterior risk as compared to 

the other loss functions particularly as C is (0.5) and the prior Extension of Jeffery’s prior provides the less 

posterior risk than Quasi prior. Moreover, when we increase the true value of 

    d  

SELF ELF ABLF 

5.0c  0.1c  2.01 b  4.01 b  5.02 c  5.02 c  

1.0 1.5 
0.3 0.00484 0.00969 0.80938 1.61877 0.00724 0.01307 

1.3 0.00468 0.00937 0.80950 1.61900 0.00689 0.01285 

1.5 2.0 
0.3 0.00245 0.00491 0.87729 1.75459 0.00310 0.00785 

1.3 0.00237 0.00475 0.87741 1.75483 0.00295 0.00772 

2.0 2.5 
0.3 0.00155 0.00311 0.92277 1.84554 0.00175 0.00558 

1.3 0.00151 0.00301 0.92289 1.84578 0.00167 0.00549 

2.5 3.0 
0.3 0.00110 0.00220 0.95754 1.91509 0.00113 0.00430 

1.3 0.00106 0.00213 0.95766 1.91532 0.00108 0.00423 

    
1c  

SELF ELF ABLF 

5.0c  0.1c  2.01 b  4.01 b  5.02 c  5.02 c  

1.0 1.5 
0.4 0.00476 0.00953 0.80944 1.61888 0.00707 0.01296 

1.4 0.00445 0.00890 0.80969 1.61938 0.00638 0.01252 

1.5 2.0 
0.4 0.00241 0.00483 0.87735 1.75471 0.00302 0.00779 

1.4 0.00225 0.00451 0.87760 1.75521 0.00273 0.00752 

2.0 2.5 
0.4 0.00153 0.00306 0.92283 1.84566 0.00171 0.00553 

1.4 0.00143 0.00286 0.92308 1.84616 0.00154 0.00535 

2.5 3.0 
0.4 0.00108 0.00216 0.95760 1.91521 0.00111 0.00426 

1.4 0.00100 0.00202 0.95785 1.91570 0.00101 0.00412 
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parameters ))0.3,5.2(and)0.2,5.1(),5.1,0.1((),( c and increase the value of )3.1,3.0(cd   

and )4.1,4.0(1 cc  , the Bayes risk of ̂ decreases quite significantly. 

 

VII. CONCLUSION 

On comparing the Bayes posterior risk of different loss functions, it is observed that SELF has less Bayes 

posterior risk than other loss functions in both priors. According to the decision rule of less Bayes posterior risk 

we conclude that SELF is more preferable loss function for different values of parameters.  

It is clear from Tables 1& 4 the comparison of Bayes posterior risk under different loss functions using quasi as 

well as Extension of Jeffery’s priors has been made through which we conclude that within each loss function 

Extension of Jeffery’s prior provides less Bayes posterior risk than Quasi prior so it is more suitable for the 

generalized exponentiated moment exponential distribution. Moreover, when we increase the true value of 

parameters ))0.3,5.2(and)0.2,5.1(),5.1,0.1((),( c and increase the value of )3.1,3.0(cd   

and )4.1,4.0(1 cc  , the Bayes risk of ̂ decreases quite significantly. 
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