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ABSTRACT

In this paper, we propose to obtain the Bayesian estimators of unknown shape parameter of a three parameter
generalized exponentiated moment exponential (GEME) distribution, based on non-informative (Quasi and
Extension of Jeffery’s) priors using three different loss functions. Two real life data sets have been used to
compare the performance of the estimates under different loss functions. The expression for survival function
has also been established under Quasi prior and extension of Jeffrey’s prior.
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I.INTRODUCTION

The three-parameter generalized exponentiated moment exponential (GEME) distribution will be quite
effectively used in analyzing several lifetime data, particularly in place of three-parameter gamma distribution,
three parameter Weibull distribution or three-parameter exponentiated exponential distribution. Moment
distributions have a vital role in mathematics and statistics, in particular in probability theory, in the perspective
research related to ecology, reliability, biomedical field, econometrics, survey sampling and in life-testing.
Hasnain [11] developed an exponentiated moment exponential (EME) distribution and discussed some of its
important properties. One of such distributions is the two-parameter weighted exponential distribution
introduced by Gupta and Kundu [10]. Dara and Ahmad [4] proposed a distribution function of moment
exponential distribution and developed some basic properties like moments, skewness, kurtosis, moment
generating function and hazard function. Bayes estimators for the weighted exponential distribution (WED) was
considered by Farahani and Khorram [8] while S.Dey et al. [15] considered the estimation of the parameters of
weighted exponential distribution. Recently, Devendera Kumar [5] obtained the moments and estimation of the
exponentiated moment exponential distribution. They obtained Bayes estimation under symmetric and
asymmetric loss functions using gamma prior for both shape and scale parameters. They also compared the
classical method with Bayesian method through Monte Carlo simulation.

As given in Zafar Igbal et al [12], the cumulative distribution function (cdf) of three parameter generalized
exponentiated moment exponential (GEME) distribution is given by

x|

F(x) = 1—XyT+ﬂeﬂ x>0, )
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Where o, fand y are positive real parameters. The probability density function (pdf) of GEME distribution is

defined as
- “t X
f(x):% 1—[1+%Je B x?’ e £ x>0,a,B,y>0. (2)

Here o and y are the shape parameters and S is the scale parameter. Fory =1, it represents the EME

distribution, for ¢ =y =1, it represents the size biased moment exponential distribution and for =y =1, it

represents the one parameter exponentiated exponential distribution.

1. SURVIVAL FUNCTION

The branch of statistics that deals with the failure in mechanical systems is called survival analysis. In
engineering, it is called reliability analysis or reliability theory. In fact the survival function is the probability of
failure by time y, where y represents survival time. The survival function is given by

a

V4 -
S(x)=1-F(x) = 1- 1—(1+%]e Pl x>0 ,a,8,7>0 )
and the hazard function is
—x7 a-1 —x7
7/ - -
0%/ 1-[1+ % e A x2r L B
B
h(x)= - :0<x<o ,a,f,7>0. (4)

_X}/

N

1-|1-[1+ X e A
B

1. MAXIMUM LIKELIHOOD ESTIMATION OF (GEME) DISTRIBUTION
Theorem 3.1: - Let X= (Xl,XZ,...,Xn)be a random sample of size n having pdf (2); then the maximum
likelihood estimator of shape parameter « , when the parameters » and £ are known, is given by

) n
AMLE = = ()

—x

B

n 7
Zln 1-1+ 5 e
~ B

Proof: - The likelihood function of the pdf (2) is given by
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VA= . X
L(x|a) = ﬁ7 1—(1+E' Je Pl x7 e (6)
i=1

The log likelihood function is given by

n

pR

In L(>_<|a):nIna+n|ny—2nlnﬂ+(27—1)znllnxi— i:lﬁ +(a—1)Zn:In 1—(1+%Je ’

X

i=1

Differentiating log likelihood function with respect to aand equating to zero, we

i=1

o ks
t—InL(X |« LI T P E R e? |=0
gea (x| a) o Z ( ﬁj

=  aMLE = R (7)

V1. BAYES ESTIMATOR

In this section, we now derive the Bayes estimator of the shape parameter « in GEMED when the
parameters S and ¥ are assumed to be known. We consider two different priors and three different loss

functions.
In our presented study, the loss functions used are defined below:

SELF: Legendre [13] proposed square error loss function and defined it as
1(6,0) =c(a-a)’.
Al-BLF: The Al-Bayyati's loss function introduced by Al-Bayyati's [1] which is given by
(&,a) =a®(G@-a)’ ;c, R’
ELF: The entropy loss function established by Dey et al. [7] which is given as
L(0) =b,[o —log(o)—1] ;b, > 0.
4.1 Posterior Density Under Quasi Prior

oci, a>0, d>0.

The quasi prior is defined as g, () 5
a

Combing the quasi prior and the likelihood function (6), then the posterior distribution of parameter ¢ is given

by

ﬂn d+1
n—d,—-af .
Py (@ L)‘ma e a >0, @
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which is the density kernel of gamma distribution having parameters ¢, = (n—d +1)and

-1

n X7
pr=>In 1—[1+ ?}e P . So the posterior distribution of (o | X) ~ G(ey, 3,) -
i=1

4.2 Bayesian Estimation Under Quasi Prior by Using Different Loss Functions

Theorem 4.2.1:- Assuming the loss function l;n5 (&, @) , the Bayesian estimator of the shape parameter

when the parameters and y are assumed to be known, is of the form

-1

A (n—d+1) n Xj Y B

alQS = ;,b’l:ZIn 1-{1+— e
2 i=1 B

Proof: - The risk function of the estimator o under the squared error loss function Lle (0?, a) is given by the

formula

00 ﬂ n—d+1
R@uﬁzjd&—af——L———am%%@ da
r(n—d+1)

n-d+1 ©
R(d’a)zcﬂl— B J‘an d+1-1 aﬂlda_l_J‘ n-d+3-1g-af; 4, _ 2aj n-d+2-1,-0f, 4 ,
r(n—d+1) O 0

,(-d+2)(n-d+1) ,.(n-d+1)
ﬂlz ﬂl
Minimization of the risk with respect to a gives us the optimal estimator as:

Qs =(n_le+1) ;ﬁlzéln 1—{1+%Jeﬂi _ 9)

R(a,a)=c|a

Theorem 4.2.2:- Assuming the loss function |1QE (d,a), the Bayesian estimator of the shape parameter o,

when the parameters S and y are assumed to be known, is of the form

Qyoe = (nﬁd) ;ﬂ1=éln 1—[1+)%Jeﬁi

1

Proof: - The risk function of the estimator o under the entropy loss function ljog (@, @) is given by the

formula
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0 d a" ﬂ n-d+1
R(@,a) = [by ——Iog[—j—l gl %dq,
0 \& a I'(n—-d+1)
~ I'(n—d+1)
R —lo +——>-1|
(@) = b{( R S }
Minimization of the risk with respect to a gives us the optimal estimator
—x;” -1
- n e
&lQE:M ;,6’1=Zln 1- 1+XI— e s . (10)
B i=1 p

Theorem 4.2.3:- Assuming the loss function ;s (&, @) , the Bayesian estimator of the shape parameter

when the parameters and y are assumed to be known, is of the form

-1

—x;

(cro+n—-d+1) n xi” |
2T RTRTY L p =311+ e
B i=1 B

QA =

Proof: - The risk function of the estimator @ under the Al-Bayyati loss function lins (&, @) is given by the

formula

o0 n—-d+1
R(@,a) = [ (@-a) P a™e ™ da
0 T(n—d+1)

oy I, +n-d+ 2)
ﬂ C2 ﬂ C2+2 ﬂ C2+1
1 1 1

Minimization of the risk with respect to & gives us the optimal estimator as:

R(a,a) =

1 &Zr(c2+n d+1) F(02+n d+3)
I'(n—d+1)

-1

_X‘y
n 7 '
Gion = Crndxh oy =2ln 1_(“%} ’ (11)

P

Remark 1.1 Replacingc, =0, in (11), we get the Baye’s estimator under square error loss function with quasi

prior which is same as (9).

4.3 Posterior density under Extension of Jeffery’s prior

1
The extension of Jeffery’s prior is defined as ¢, (@) oc G € R™.
o

Combing the extension of Jeffery’s and the likelihood function (6), then the posterior distribution of parameter

a is given by
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-2c;+1
B n-2c 12)

—2C ,—af; .
al X =—(Zn le La >0,
P2 (/%) I'(n—2c; +1)
which is the density kernel of gamma distribution having parameters

X

N x| 2
a, =(n—2c, +1)and B, =X In| 1~ (1'1' ?je 7| so the posterior distribution of
i-1

(a|X) ~G(a,, B)-
4.4. Bayesian Estimation under Extension of Jeffery’s Prior Using Different Loss Functions

Theorem 4.4.1:- Assuming the loss function I2EJS (a,), the Bayesian estimator of the shape parameter ¢,

when the parameters and y are assumed to be known, is of the form

-1
—x”
. n—2c; +1 n Xi”
a2EIS :(Tll) ,ﬂl :-len 1- 1+|7 e B
1=

Proof: - The risk function of the estimator oz under the squared error loss function IZEJS (a,) is given by the

formula

5 ﬂn—2c1+1 5
I S | Cle_aﬂlda.

R(a,a) = 5 —
(@) gc(a @) '(n—2c; +1)

2, (n—2c; +2)(n—2c¢; +1) 24 (n—2c; +1) .

R(a,a)=c|a 5
B
Minimization of the risk with respect to a gives us the optimal estimator
-1
i
. n—2c; +1 n Xj
a2EJS ZQ ;ﬂlzzm 1-|1+-2— e B . (13)
2 i=1 B

Theorem 4.4.2:- Assuming the loss function IZEJE(OA"“)’ the Bayesian estimator of the shape parameter & ,

when the parameters and y are assumed to be known, is of the form

-1
%

. n—2c n xi”
i=
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Proof: - The risk function of the estimator ¢z under the entropy loss function |2EJE(5l,a) is given by the

formula

S (f{ d ﬂ n—201 +1 5
R(@,a) = [by] =-log| = |-1| L1 ———a" e 1 da

o \& a I'(n-2¢ +1)
R(&,a) = bl |0g(d)+w_
) r'(n—2c; +1
Minimization of the risk with respect to a gives us the optimal estimator
1-1
(n-2c,) n x|
B i=1 p

Theorem 4.4.3:- Assuming the loss function |, (&, @), the Bayesian estimator of the shape parameter cr

when the parameters and y are assumed to be known, is of the form

-1
—x;”
— n e
(Cp +n—2c; +1) B = Yin|1- 1.5 | 8
B i=1 B

A2EIA =

Proof: - The risk function of the estimator o under the entropy loss function l,g;a(@, ) is given by the

formula

A _OO Cyra 2 ﬁln et n-2c, ,—af;
R(a,a)—J.a (a—a) " ———a e da.

3 I'(n—2c; +1)
. 1 2 T(Cr+n-2c;+1) TI'(cp+n—-2c;+3 I'(c)+n-2c1+2
R(d,ct) = ;2L 1+ T'(C 1+3) 5T 112) |
I'(n—2c¢; +1) 15102 ﬂlcz +2 15102 +1
nimization of the risk with respectto & gives us the optimal estimator
—x” -1
. Cyr+n—2c1 +1 X"
O2EJA = ( 2 1 ) ﬂl = Zln 1-{1+2— (5] B . (15)
I =1 B

V. ESTIMATOR OF SURVIVAL FUNCTION
5.1 Estimator Under Quasi Prior of Survival Function

By using posterior distribution function, we can find the survival function such that
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_X}’ o 4l
. © v —— n—d-+
S10(x) = [11-|1- 1+ e A P gn-dg-apigg
0 i) '(n—-d+1)

3 K nd < 4 = n—d+1
S, (X) = ’Bl—a”*de‘”‘/}ida —[11= 1+X_ e/ ﬂl—anfde—aﬁlda
1Q 5

I T(n—d +1) ) T(n—d +1)
ﬂ n—-d+1
S (x)_l—[ L J
° 131_132
_x.7 -1 _x
n XJ/ I X}/ -
(16) where 8 = YIn|1- 1+'7 e 7 | and B, =In|1- 1+F e # |
i=1

5.2 Estimator under Extension Prior Of Survival Function

By using posterior distribution function, we can find the survival function such that
o

_X7

R © Y\ n—-2c,+1

SZE(X)=J‘ 1-|1-[1+ X e A ’Bl—an_zcle—aﬂlda
0 B I'(n—2c; +1)

R © ﬁ n-2c,+1 © X7 =X ﬂ n-2¢,+1
SzE(X) = J.l—anfzcle*“ﬂida —J‘ 1—(1+—Je A l—anizqeiaﬂld(l
0 0

I'(n—2c, +1) Y I(n-2c, +1)
n-2c,+1
§2E(X)=1—(LJ :

PP

v X N -x

n . y\ —

(17) where B = 3In| 1- 1+X'7 e A | and py=In|1- 1+% e /

i=1

VI. APPLICATIONS

To compare the performance of the estimates under different loss functions for the generalized exponentiated
moment exponential distribution, two real data sets are used and analysis performed with the help of R software.
Data set I: The first data set is given by Gross and Clark [9] which represents the lifetime’s data relating to
relief times (in minutes) of 20 patients receiving an analgesic. The data are as follows: 1.1, 1.4, 1.3, 1.7, 1.9,

18,16,22,17,2.7,41,18,15,1.2,1.4,3.0,1.7,2.3,1.6, and 2.0
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Table 1: Bayes Risk of a. under Quasi prior for Data set |

SELF ELF ABLF
A7 c=05 c=10 b, =0.2 b,=04 | ¢,=05 | ¢c,=-05
03 | 012806 | 0.25611 0.44425 0.88851 0.39562 0.16777
O S T o | oz 0.44452 0.88904 0.36763 0.16361
03 | 007248 | 0.14496 0.50117 1.00234 0.19423 0.10948
P2 T oomees | o1aree 0.50143 1.00287 0.18049 0.10677
03 | 005948 | 0.11897 0.52092 1.04185 0.15172 0.09440
2028 13 | 005661 | 0.11323 0.52119 1.04239 0.14099 0.09206
03 | 005711 | 0.11422 0.52501 1.05001 0.14418 0.09155
#5139 13 | 005435 | 0.10871 0.52527 1.05054 0.13398 0.08929

SELF: Squared error loss function, ELF: Entropy loss function and ABLF: Al-Bayyati’s loss function.

Table 2: Bayes Risk of a under Extension of Jeffery’s prior for Data set |

SELF ELF ABLF
P71 % TeZos [ =10 b=02 | b=04 | c,=05 | c,=-05
04 | 012496 | 0.24993 0.44438 0.88877 0.38154 0.16571
HO e 14 | 011259 | 022518 0.44498 0.88996 0.32695 0.15718
04 | 007073 | 0.14146 0.50130 1.00260 0.18732 0.10813
e 14 | 006373 | 012745 0.50189 1.00379 0.16051 0.10257
04 | 005805 | 0.11610 0.52105 104211 | 0146326 | 0.09324
2002 T oosm0 | otome 0.52165 1.04331 0.12538 0.08844
04 | 0055732 | 0.11146 0.52513 1.05027 0.13905 0.09043
23 T oeenr | o003 0.52573 1.05146 0.11916 0.08578

SELF: Squared error loss function, ELF: Entropy loss function and ABLF: Al-Bayyati’s loss function.

From Table 1 and 2 shows that squared error loss function provides the minimum posterior risk as compared to
the other loss functions particularly as C is (0.5) and the prior Extension of Jeffery’s prior provides the less
Quasi the

parameters (3, ») = ¢((1.0,1.5), (1.5,2.0)and (2.5,3.0)) and increase the value of d =c(0.31.3)

posterior  risk  than prior.  Moreover, when we increase true value of

andc; =c(0.4,1.4) , the Bayes risk of & decreases quite significantly.

Data set I1: The second data set studied by Meeker and Escobar [14], which gives the times of failure and
running times for a sample of devices from a eld-tracking study of a larger system. At a certain point in time, 30

units were installed in normal service conditions. Two causes of failure were observed for each unit that failed:
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the failure caused by an accumulation of randomly occurring damage from power-line voltage spikes during
electric storms and failure caused by normal product wear. The times are:
2.75,0.13, 1.47,0.23, 1.81, 0.30, 0.65, 0.10, 3.00, 1.73, 1.06, 3.00, 3.00, 2.12, 3.00, 3.00, 3.00, 0.02, 2.61,
2.93,0.88, 2.47,0.28, 1.43, 3.00, 0.23, 3.00, 0.80, 2.45, 2.66.

Table 3: Bayes Risk of o under Quasi prior for Data set |1

SELF ELF ABLF
g7 | d
c=05 c=10 | b =02 | b =04 | c,=05 | c,=-05
03 | 0.00484 0.00969 0.80938 | 161877 0.00724 0.01307
ol 13 | 0.00468 0.00937 0.80950 | 1.61900 0.00689 0.01285
03 | 0.00245 0.00491 0.87729 | 1.75459 0.00310 0.00785
e 13 | 000237 0.00475 0.87741 | 1.75483 0.00295 0.00772
03 | 000155 0.00311 092277 | 184554 | 0.00175 0.00558
2002 3T ooomst 0.00301 092289 | 184578 0.00167 0.00549
03 | 000110 0.00220 095754 | 191509 0.00113 0.00430
S B e T 0.00213 095766 | 191532 0.00108 0.00423

SELF: squared error loss function, ELF: Entropy loss function and ABLF: Al-Bayyati’s loss function.

Table 4: Bayes Risk of a under Extension of Jeffery’s prior Data set 11

SELF ELF ABLF
P71 % FeZos | o=to b,=02 | b=04 | ¢,=05 | c,=—05
04 | 000476 | 0.00953 0.80944 161888 0.00707 0.01296
H R T oo0ass | o009 0.80969 1.61938 0.00638 0.01252
04 | 000241 | 0.00483 0.87735 1.75471 0.00302 0.00779
P o0 | ooom 0.87760 1.75521 0.00273 0.00752
04 | 000153 | 0.00306 0.92283 1.84566 0.00171 0.00553
20 T oooms | o0z 0.92308 1.84616 0.00154 0.00535
04 | 000108 | 0.00216 0.95760 1.91521 0.00111 0.00426
2130 0.00100 | 0.00202 0.95785 1.91570 0.00101 0.00412

SELF: squared error loss function, ELF: Entropy loss function and ABLF: Al-Bayyati’s loss function.
From Table 3 and 4 shows that squared error loss function provides the minimum posterior risk as compared to

the other loss functions particularly as C is (0.5) and the prior Extension of Jeffery’s prior provides the less

posterior risk than Quasi prior. Moreover, when we increase the true value of
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parameters (3, 7) =¢((21.0,1.5),(1.5,2.0)and (2.5,3.0)) and increase the value of d =c(0.31.3)

andc; =c(0.4,1.4) , the Bayes risk of & decreases quite significantly.

VII. CONCLUSION

On comparing the Bayes posterior risk of different loss functions, it is observed that SELF has less Bayes
posterior risk than other loss functions in both priors. According to the decision rule of less Bayes posterior risk
we conclude that SELF is more preferable loss function for different values of parameters.

It is clear from Tables 1& 4 the comparison of Bayes posterior risk under different loss functions using quasi as
well as Extension of Jeffery’s priors has been made through which we conclude that within each loss function
Extension of Jeffery’s prior provides less Bayes posterior risk than Quasi prior so it is more suitable for the

generalized exponentiated moment exponential distribution. Moreover, when we increase the true value of

parameters (3, 7) =c((1.0,1.5),(1.5,2.0)and (2.5,3.0)) and increase the value of d =c(0.31.3)

andc; =c(0.4,1.4) , the Bayes risk of & decreases quite significantly.
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