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ABSTRACT  

In this paper, an improved class of estimators for estimating population variance, using auxiliary information 

has been proposed. The expression for mean square error (MSE) up to the first order of approximation has been 

derived. From the proposed class, various estimators are derived by allocating suitable values of unknown 

parameters as particular members of the suggested class. The empirical study is carried out to illustrate the 

theoretical results.  

Keywords: Exponential estimator, Auxiliary variable, Mean square error (MSE). 

I.INTRODUCTION 
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  be the covariance between 

2

yS and 
2

xS  . Let  
2

20

40

2



 y  is the kurtosis for 

population of the study variable and  
2

02

04

2



 x be the kurtosis for population of the auxiliary variable, 

where    






N

i

s

i

r

irs XxYy
N 11

1
 and 

n

1
 . Also     12

*

2  yy  , 

    12

*

2  xx  and  122

*

22   . We ignored finite population correction (fpc) term because of 

ease of computation. 

 

II. EXISTING ESTIMATORS IN LITERATURE 
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The mean square error (MSE) up to the first degree of approximation is given as 
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[1] also presented the regression estimator for population variance using auxiliary variable as 
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Assuming knowledge on  x2 , the population coefficient of kurtosis of the auxiliary variable x, [2] suggested 

the following ratio-type estimator for 
2

yS as 
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Motivated by [3], [4], [5] and using the knowledge on  xCx 2,  associated with auxiliary variable x, [6] 

envisaged the following ratio-type estimators for population variance 
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Further on the lines of [7], one may define the following ratio type estimators for 
2

yS  as 
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We note that the estimators  9,......,1it are members of the class of estimators of 
2

yS  given by [8] 
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where (a, b) are either constants or function of known parameters such as    xxCX x 21 ,,,   and yx of the 

auxiliary variable x. The mean square error (MSE) up to the first order of approximation is given by 
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III. PROPOSED ESTIMATORS 

Following [1] and Singh and [8], we propose the generalised exponential ratio estimator for estimating 

population variance given as 
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To obtain the bias and mean square error (MSE) we write 
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Expressing (1) in terms of se ,
we have 
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Expanding the right-hand side of (2) and neglecting the terms of se ,
 with a power greater than two, we have 
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Subtracting 
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yS from (3) and taking expectations from both sides we get, 
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Squaring equation (4) from both sides, we get the MSE of the proposed estimator up to the first degree of 

approximation given as, 
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To obtain the optimum value of  we differentiate the  *

itMSE  with respect to  and equating the derivative 

to zero, opt  thus obtained is given by, 
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The proposed estimator 
*

it at its optimum condition is equally efficient as the regression estimator for 

population variance. As mentioned above, various estimators are derived by allocating suitable values of 

unknown parameters as particular members of the proposed class of estimators. Some members of the proposed 

class of estimators for different values of a and b are given in table 1. 
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In addition to the above estimators, a large number of estimators can be generated from the proposed estimator 

*

it  by substituting the different values of a and b. The expression of MSE of the above said estimators is given 

by     
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IV. EMPIRICAL STUDY 

In this section, we consider the following data sets for numerical comparisons. 

Population: {Source: [9]}. Let y = Level of apple production (1 unit=100 tones) and x = Number of 

apple trees (1 unit=100 trees). 

                 Table 2 Data statistics 
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Table 3 shows MSE and percent relative efficiency (PRE) of the proposed estimator with respect to the existing 

estimators. 

 Table 3 
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296.07 
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296.07 
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4862.20 

 

296.07 
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4862.20 

 

296.07 
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299.55 
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4805.63 

 

299.55 
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4805.63 

 

299.55 
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333.96 
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V. CONCLUSION 

From the results of the empirical study and theoretical discussions, it is inferred that the proposed estimator 
*

it , 

for estimating the population variance of the study variable under the optimum condition performs better than 

the sample variance estimator, 
2

yS  and traditional ratio type variance estimator it given in literature, therefore 

it should be preferred for the estimation of population variance. 
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