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Abstract

In this paper, a new family of T-X distribution namely Gamma Expo-
nential Distribution(GED) is defined. We study information properties of
the GE distribution and provide an assortment of information measures
for the GED. The measures include Shannon entropy, Renyi entropy, [3-
entropy, Generalized entropy, Kullback-Leibler divergence. Some of its
properties including limit behaviour, hazard function, survival function,
moments, mean deviation, mode, moment generating function, charac-
teristic function are discussed. Parameter estimation of the gamma ex-
ponential distribution by the maximum likelihood method is proposed.
Fisher information matrix for the gamma exponential distribution is also
obtained.

keywords: T-X family, Shannon entropy, moments, estimation, Kullback-
Leibler information.

1 Introduction

The exponential distribution is one of the key distributions in the theory and
practice of statistics and are commonly employed in the formation of methods
of lifetime distributions and stochastic process in general.[1] referred to the ex-
ponential distribution, while discussing the sampling distribution of standard
deviation, as Pearson's Type X distribution. Applications of the exponential
distribution in actuarial, biological and engineering problems were demonstrated
subsequently by [2], [3] and [4]. The extension of the exponential distribution
in the form of Weibull distribution were studied by [5]. This family of distri-
butions includes the exponential distribution as a special case when the shape
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parameter equals one.

Reliability theory and reliability engineering also make extensive use of
the exponential distribution. Because of the memoryless property of this distri-
bution, it is well suited to model, the constant hazard rate portion of the bathtub
curve used in reliahility theory. The basic characterization of the exponential
distribution hased on lack of memory is simply the logarithmic equivalent of the
functional equation f(x+y) = f(z)f(y), which is due to [6], [7] and [8]. A com-
plete solution of the logarithmic equivalent of this functional equation for both
continuous and discrete cases was provided by [9] and [10]. [11] characterized
exponential through Poisson and renewal process, [12] through order statistics
and [13] through range and ratios of order statistics.

Numerous authors have derived various generalizations of the distribu-
tions. [14],[15] and [16] introduced the two-parameter generalized exponential
distribution can be used in analyzing many life time data. Researchers devel-
oped and studied new and more flexible distribution. Parameters estimation
of gamma-Pareto distribution was considered by [17]. [18] proposed T — X
method for generating families of continuous distributions. The problem of
estimation of paremeters of Weibull-Pareto distribution by the method of mod-
ified maximum likelihood was considered [19]. [20] studied various structural
properties of gamma X family specialised their results on gamma-normal dis-
tribution. The gamma and exponential distributions are the most widely used
in the reliability and survival studies. In addition, the exponential distribu-
tion is one of the members of gamma—X family as well. [21] generalizes the
method of T-X family by inclusion of an additional parameter ¢ which leads
to a new family of exponentiated T-X distribution and studied the properties
of exponentiated weibull-exponential distribution. [22] extended the exponenti-
ated weibull-exponential distribution to more general form.

Alzaatreh et al (2013) presented the cumulative distribution function (cdf)
of the Transformed-Transformer family or T' — X family as follows

—log(1—F(z))
G(z) :/ r(t)dt (1)
0
Where r(t) is the probability density function (pdf) of random variable T de-
fined over [0,00) and F(z) is the cumulative distribution function of random
variable X.
The probability density function for the continnous random variable X can

be written as
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o) = LEri-log(1- Fl@) @

glz) = h{z)r(H(z)) (3)

g(z) shows that the T'— X family of distributions has associated with the haz-
ard functions and each generated distribution can be considered as a weighted
hazard function of the random variable X .

IfT ~ (o, 3), then

]. —1 _ X
j = A= leTEt >
r(t) SQI‘{a}t e Fit>0

Using (2), the pdf of gamma—X family is

gz) = () flx)[~log(1—F(z)* ' NI-F@)]7" (1)

This paper is organised as follows. In section (1.1), we define the gamma-

exponential distribution. Shannon entropy of the GED is given in section (2.1).

Section (2.2),(2.3),(2.4) and (2.5) defines Renyi entropy, S-entropy, generalized
entropy, Kullback-Leibler Divergence. Insection (3.1),(3.2),(3.3),(3.4),(3.5),(3.6)
we discuss some properties of the GED, including limit behaviour, moments, mean
deviation, mode, moment generating function and characteristic function. Sec-

tion 4 contains the method of maximum likelihood for estimating the parameters

of gamma-exponential distribution. At last, we obtained Fishersinformation

matrix for GED in section 5. Section 6 gives some brief concluding remarks.

1.1 The Gamma-Exponential Distribution (GED)
It X is a exponential random variable with density function
flx)=0e x>0 (5)
and edf for exponential random variable is given by
Flz)=1—¢7" (6)
Using (5) and (6), then (4) results in

i

— a—1g —fzy L. ¢
Q{I) - F(Q}BG € {E }-5!:1' = H!&r.d!ﬁ >0 (?}

Putting —g— = ¢, then (7) becomes

1
" T(a)e"

a—1

e e a,e >0 (8)

g(x)
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g(r) follows the gamma-exponential distribution with parameters o and e. If
a =1 in (8), the gamma-exponential distribution leads to the exponential dis-
tribution with parameters % and if ¢ = 1 it leads to the gamma distribution
with parameter a.
The edf of the gamma-exponential distribution results as

1

@) = ey (@ 0o) (9)

where y(a, t) = f; u®~le~*du is the incomplete gamma function

The survival function of the GED is given by

(e, Oz)

')
and the hazard function of the GED can be obtained as

Rz)=1—-G(z)=1-—

He) = i

ro—le—%
M*) = ET) =, e (10)

2 Information Measures

Information theory is a branch of probability with extensive potential applica-
tions to the communication systems. like several other branches of mathematies,
information theory has physical origin. It was initiated by communication seci-
entists C.E Shannon in 1948, who were studying the statistical strueture of
electrical communication equipments.

2.1 Shannon entropy

The Shannon entropy for the GED is given by the following theorem.
Theorem III: The Shannon entropy for GED is given by

Ny =loge+a+logla) + (1 — a)(a)

Proof: The Shannon entropy of the gamma—X family of distributions is given
by

e = —Eflogf(F'(1-eT))]+al-p)+logB+ (11)
log['(a) + (1 — a)¥(a)

where 10 is the digamma function and T is the gamma random wvariable with
parameters v and 5, using (5) and (6) in the expectation part of the above
expression as

—Eflogf(F*(1—eT))] = —log# + E[T] (12)
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using E(7') = a3 in (12), it reducse as
—Eflogf(F'(1—eT))] = -logh +ap (13)

substituting (13) in (12) and puttin % = ¢ the entropy for GED can be obtained

as

N =loge+a+logla) + (1 —a)y(a)

2.2 Generalized Entropy

Generalized entropy is often used in econometrics. It is indexed by a single
parameter 4. The generalized entropy is defined as

arep—d _
5= UEEZ:T——I}I’ where 40,1 (14)
vs = E(2%) = - z° ! " le~ % dr (15)
o Dla)en
Substituting £ =1, (15), can be written as
B AT(S + a)

using (15) and (16), the generalized entropy in (14) reduces to

_ T +a)e T (1+4) —T(a)

Is 36 — DI(a)

2.3 Renyi Entropy

The Renyi (1961) entropy for the random variable X with probability density
function g(x) is defined as

In(S) = - 1 < log [/gs[:r)dm] S$>05#£1 (18)
By using the gamma-exponential probability density function in (8), we have
= = ]. Sz
s _ S(a—1),—35% 5
-/0 g7 (z)dr = -/0 TS(a)cda T e~ © dx (19)
Substituting % =u, (19) can be rewritten as
- S, dr = cl_s - —u, S(m—l}d_
A g (z)dz = T () 551 | e "u u
oo 1-5 ,
Seng. ¢ "ISa-1)+1 _
| @ = S (20)
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Using equation (20), the Renyi entropy in (18) can be written as

1 TS —1)+1
Ir(S) = ﬁk}g l FS(G.)SS(Q—1}+1 ]

Ir(S) = loge— ﬁ[SlogF{a} +(S(a—1)+1)logs —
log'(S{a — 1) + 1)] (21)

Shannon entropy is a special case of Renyi entropy obtained by taking the limit
of Renyi entropy as s — 1. The result in (14) follows by using the L+Hopital:
rule for evaluating the limit equation (21) as s — 1.

2.4 [p-Entropy

B-entropy is a one parameter generalization of the Shannon entropy. Applica-
tions of the S-entropy can be find in many physical systems. The F-entropy is
defined by

Hs(g) = ﬁ [1 — f g-s{:r)dr] , for B#£1 (22)

1 Sz
BN g Bla—1),— 5= ;
ufu g° (z)dr _./o Fﬁ(a)rﬁﬂf e = dx

> -Ar(B(a— 1) + 1
/U g7 ()i = = F.B(i-)g.:i:{a—l)m ) (23)

using (23) in (22), the S-entropy for GED can be written as

1 e Pr(B(a — 1) 4+ 1)
Hs(g) = A1 [ - TA(a)BFla—1)+1

(24)

2.5 Kullback-Leibler Divergence

Kullback-Leibler divergence, between two probability distributions on a random
variable is a measure of the distance between them. In case of discrete random
variable the Kullback-Leibler divergence between two probability distributions
is defined as

K(pllq) = Zpa log—

and in continuous case

K (pllq) = f p(z) log E ;da:

Let GED, = GED(a,, c,) be a given GE D distribution, then the discrimination
information function between GED and GEI, is given by
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K(GED|GED,) = [ oo 20 dy

- f g(y)log g(y)dy — / 9(y) log go(y)dy

— —H(g)+ Hl(g.) (25)

0= o )

H(g) =logl'(a) + aloge — (a — 1) E(log z) — éE(:c} (26)

nlH

E(logz) = [ log xg(x)dz
Jo

= 1
= log e Tdr
.4 5 T (a)e

]

E(logz) = %{logc +1b(a)), where ¥(a)= 1; ((;) (27)

Using (27),(26) reduces to
H(g)=logl'(a) + a(loge — 1) — (a _ D, (loge + ¥(a)) (28)
H(g,) =logl'(a,) + ay(loge, — 1) — (@ —1) (log ¢, + ¥(a,)) (29)

o

Using (28) and (29) in (25), the following expression is given as

K(GED||GED,) = log Fl_,({;o}) + a(loge — 1) + as(loge, — 1)

(a—1) e
————(loge+y(a))

_@(log o+ U(ax,)) (30)

o

3 Properties of the gamma-exponential distri-
bution

Gamma-exponential distribution has some relations with other distributions.

Using the transformation technique these relations can be obtained. Let ¥ be a

random variable with parameters (a, ¢), then using the transformation X = fe¥
probability density function of gamma exponential distribution is obtained.
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3.1 Limiting behaviour

The limiting behaviours of the gamma-exponential PDF is given in the following
theorem.

Theorem I: The limit of the gamma-exponential density function is zero when
2 goes to infinity, and when # — 0 | the limit is given by

0, a>1
A _ . . _ l o
o) =) =1 o=l
00, a <1
Proof:
) 1 ] _Te:k—l
A, 900 = Fgys o
Applying L, Hopital's rule, it reduces to
) a—1
Am g(r) = ———==0 (31)

If o > 1, then, (31) goes to zero, if a < 1 | it goes to infinity and if oo = 1, it
reduces to L.

Theorem II: The limit of the hazard function for the gamma-exponential dis-
tribution when x goes to infinity is given by:

0, a1
lim h(z) = L a=1
T—+00 00, a<l
Proof: we have
Jim @) = Jim G
o 9(z)
= mi—em

Since lim, ... g(z) = 0, it can be shown that lim, , A(z) = 0 by using L,
Hopital's rule.

3.2 DMNoments of GED

The st* non-central moments of GED are given by

b 1 .
E(X®) = x® e Tdr
(X7) fn [Na)e
Letting £ = ¢, then
. cl'(s +a
E(X7) % (32)
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E(X) = p = ac is the mean of the gamma-exponential distribution.
- s
E(X —p)s = —1)s kps—kFE(XF 33
X =7 =3 (7)) 0 te (33)

The central moments shown by Alzaatreh et al (2012), expresses that for any
random variable, it can be shown as Using (32) and (33), the central moments
for the gamma-exponential random wvariable X can be obtained as

EI:X — ) = Csz (;—Z) [—ljs_kas_k% (3_1}
E=0

Using (34), the variance and the coefficient of variation (C'V') of GED is given
as

02 = l.“_'k'lf!2

cv = L

0z

1402 —a—1

nm=—1 (35)

=z

Y2 = é X [(a+1)a+2)(a+3) —4a+1)(a+2)+

6a’(a +1) — 3a°] (36)

The above equations (35) and (36), are the skewness and kurtosis of the gamma-
exponential distribution.

3.3 Mean Deviations of GED

By the definition

M
Dip)=p— QL xg(x)dz (37)

M
D(M) = —2 / (M — z)g(z)dz (38)
JO

Now the integral

m m 1 o
rglx dafzf e =dx
Jy s = [ i

(39)
Putting = = w, the expression reduces to
" ea(z)de = M m ;
A rg(z)dr = F(a}? (a: +1, . ) (40)
M
1L M’)
and zg(z)dr = Yla+1, 41
,/g g{ :] I‘(Cl) f ( "o ( }
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Using (9), (40) and (41) in (37) and (38) the mean deviation from the mean and
the mean deviation from the median for the gamma-exponential distribution
can be written as

20 [y(e, %) — 7 (a1, %)]
I'(cx)

2 (i M
me(&+=c)}
3.4 Mode of GED

The log of gamma-exponential distribution in (8) is as follows

D(p) =

D(M) = p [1 -

logg(z) = —logI'(a) —aloge+ (a — 1) log x — % (42)

Differentiating (42) with respect to x, the following expression is obtained

-

J _ecla—1)—=x
alogg(i") =

T
Now equating a% log g(x) = 0 implies
r=c(ax—1), where a>1 (43)

This is the mode of GED when o > 1.

3.5 DMoment generating function of GED

M.(t) = E(e™) = / e g(x)dr
L I:I
1 - oa—1 1 A -
= m ./o T exp (—:c (E — t)) dx (44)
Let = (L —t) = 2, the integral in (44), can be written as
M, (t) = (2) (45)

T T(a)e (L —1)"

Equation (45), is moment generating function for gamma-exponential distribu-
tion.

3.6 Characteristic function of GED
() = E(e'")= /DC e g(z)dx

Jo
= c*“l—t‘L(a} A > Lexp (—:c (% — ?lt)) dzx (46)
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Let = {% - -.it) = z, the integral in (46), can be written as
. I'iz
P(t) = (2) (47)

T(a)e (2 —it)”

Equation (47), is characteristic function for gamma-exponential distribution.

4 Parameter estimation for GED

The likelihood function of (8) is

1 n n B ?-1_ ‘i.
L(a,¢) = lr(&}ca] Hlim Lexp (_Z—%) (48)

and the log-likelihood function of (48) is given by

logL(cv,e) = —nlogl(a)—naloge+ (a—1) Z logx; —
i=1

> iy Ti
i= 49
C (49)
Differentiating (49), with respect to a and ¢ gives

dlog L(a, e)

o = —nyY(a)—nloge+ Z T (50)

i=1
where % = t(a) is the digamma function.
dlogL(e,e)  no | 30wy
de e c

Setting (50) and (51) to zero, we obtain the following MLE of & and ¢

Z?:l Ti
n

U(a) = —loge+

[
Il
2= B

5 Fishers information matrix of gamma-exponential
distribution

Appling log on both sides in (8), we have

logg(a,c) = —aloge — log'(a) + (¢ — 1) logz — % (52)
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Differentiating (52), with respect to a and ¢, we get

9logg(a,c) lﬁg.g{a', 9 _ _ loge —¥(a) +logx
o
where ¥(a) = % is the digamma function
9% log g(a, €) .- o
oz = (V())® — ¥(d)
Jg o T
de c 2
J _ 1
dade ¢
& a2
dez 2
Taking expectations on both sides of the equations, we get
3%log g(a, e) o 2
I11) = -E {T} — (&) — ($(e))
(0% logg(a,e)] 1
10,9 = -Fl—Gs | =%
(9% logg(a,e)] 1
120 = -Fl—56 | =%
B 9 logg(a,c)] @
1(2,2) = -E [T} =3

Now, the Fishers information matrix of gamma-exponential distribution is given
by

¥(d) — (¢(a))?

=

Ha,e) =

B
I‘HQ
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6 Concluding remarks

In this paper, a special case of gamma-X family, the gamma exponential dis-
tribution is derived. The gamma exponential distribution is a generalization of
exponential distribution. In general, the gamma exponential distribution is a
generalization of the X distribution. The gamma exponential distribution can
be over-dispersed, equi-dispersed or under-dispersed as well as left skewed, right
skewed or symmetric. If the data is skewed, one should fit a gamma exponential
distribution instead of an exponential distribution. We presented some informa-
tion properties of gamma exponential distribution. It is hoped that the findings
of the paper will be useful for the practitioners in various fields of theoretical
and applied sciences.
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