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ABSTRACT 

In this article we review some of the recent developments in mathematical modeling of tumor. Despite internal 

complexity, tumor growth kinetics follow relatively simple laws that can be expressed as mathematical models. 

Parabolic partial differential equations with nonlocal boundary conditions arise in modeling of tumor invasion. 

The 2D diffusion equation allows us to talk about the statistical movements of randomly moving particles in two 

dimensions. The movement of each individual particle moving in a Brownian (diffuse) way does notfollow the 

diffusion equation. However, many identical particles each obeying the same boundary and initial conditions 

share some statistical properties dealing with their spatial and temporal evolution. In this paper, we present the 

implementation of positivity preserving Padé numerical schemes to the two-dimensional diffusion equation with 

nonlocal time dependent boundary condition. The goals were threefold: 1) to conclude a mathematical model 

for description of the measurement error, 2) to establish the descriptive power, using several goodness-of-fit, 

and 3) to measure the models’ ability to estimate future tumor growth. We successfully implemented these 

numerical schemes and the numerical results show that these Padé approximation based numerical schemes are 

quite accurate and easily implemented. 

Key Words: Positivity preserving Padéapproximation, Solid tumor growth, Reaction-diffusion 

equations 

 

I. INTRODUCTION  

Cancer is the second most fatal disease worldwide after heart disease [1]. A cancer cell evolves from normal due 

to genetic mutations, which abnormally alter the cell proliferation rate. In particular, glioma is a rapidly 

evolving type of brain cancer, well known for its aggressive and diffusive behavior [2]. This diffusive invasion 

has lead several research efforts to explore the tumor’s progression with the aid of mathematical diffusion 

equations [3-5], aiming to predict its spatial and temporal evolution. The high diffusion rate of tumor cells from 

the core tumor into the surrounding brain tissue often leads to treatment failure and tumor recurrence, even after 

the surgical resection. Brain tumor vary from low- to high-grade, namely glioblastomas, which constitute the 

most malignant form of brain cancer, having an extremely poor prognosis. 

In parallel to identification of tumor characteristics, the prediction of tumor growth and diffusion can lead to 

useful insight into the disease dynamics, which may improve clinical outcomes. To this respect, several 
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mathematical and computational models have appeared in the literature, which investigate the mechanisms that 

govern tumor’s progression and invasion, with the aim of predicting its future spatial and temporal evolution, 

with or without the effects of therapy [7]. The models may constitute valuable tools for assisting the clinical 

practice towards the optimal individualized treatment, while facilitating medical research analysis. 

 

II. MATHEMATICAL STRUCTURE 

The tumor growth has been usually modeled as a reaction diffusion process in the many literature. Jones et al. 

[1] have given a simple tumor model based upon this idea. A model describing the growth of the tumor in brain 

taking into account diffusion ormotility as well as proliferation of tumor cells has been developed in a series of 

papers [2, 3]. In continuation of this approach, Tracqui et al. [4] suggest a model which takes into account 

treatment and thus killing rate of tumor cells along with the above factors.The governing equation in this case is 

 

Where is the concentration of tumor cells, 𝐷is the diffusion coefficient, M is the proliferation rate, and N is the 

killing rate. 

Assuming complete radial summery, Moyo and Leach [3] have studied this model with 

being variable. 

The resulting governing equation reduces to the simple form, 

 

The present study is based upon the fact that the diffusivity is not necessarily a constant and may depend upon 

the concentration of tumor cells. Moreover, the net killing rate 𝐾is also taken to be c-dependent. This introduces 

nonlinearity in the governing equation. Keeping these assumptions in mind (1) becomes, 

 

Where D(c) is the diffusivity of the medium and 𝐾(c) is the net killing rate. One may refer to [7–10] for a good 

account of this method. Some recent studies in nonlinear diffusion equations using this approach can be found in 

[1, 6]. 

Modeling assumptions: 

The following modeling assumptions are made (from a biological viewpoint) in order to specify the exact form 

of Eq.2 for each of the continuum model field variables Pertaining to the tumor cells (living and dead). 

1. Living tumor cells proliferate (cellular mitosis) only if the levels of nutrient reaching them are sufficient (i.e., 

above a certain threshold) 

2. Living tumor cells die if the levels of nutrient reaching them are too low. (i.e., below the threshold) 

3. Once a number of living cells inside the tumor have died due to insufficient nutrient, the nutrient becomes 

sufficient for the remaining ones to survive; thus, there is a smooth transition to a necrotic region; 
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4. When crowded by their neighbors, the living tumor cells have the ability to migrate towards lower density 

areas where they have higher chances of surviving and proliferating; 

5. Dead tumor cells do not move; 

6. Dead tumor cells are assumed to naturally disintegrate into waste products (water). 

 

III.DESCRIPTION OF METHOD OF SOLUTION 

The two-dimensional parabolic partial differential equation with nonlocal boundary conditions arise in many 

important applications in sciences. In recent years, a number of numerical techniques for solving two-

dimensional parabolic partial differential equations with nonlocal boundary condition have been studied. 

In this paper, we consider the implementation of positivity preserving Padé schemes for two dimensional 

diffusion equations with nonlocal boundary conditions. -Padé schemes are known as positivity-

preserving Padé schemes. The name “Positivity-Preserving Padé” was given by Wade et al. [13]. The positivity-

preserving Padé schemes are relatively a new research area; they have captured the interest of mathematicians 

and scientists. In the past few years, much attention has been devoted to the development of positivity-

preserving schemes. The concept of positivity has emerged prominently because it has been found to be an 

important factor in controlling spurious oscillations. 

The outline of this paper is as follows: In section 3.1 we will give a brief review of Padé approximants. In 

section 3.2 we will discuss the positivity-preserving Padé schemes. In section 4 we present numerical 

experiments. Concluding remarks are given in section 5. 

 

3.1 PADE` APPROXIMANTS 

Padé approximants are generalizations to power series approximations. If and  are polynomials 

of degree n and m respectively, then “  is a Padé approximation of a function f (x) ” means that 

 

As in [34], Padé proposed that one can find the closest approximation to a given series by defining a 

rational function, 

 

Where, 

 

and 
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Let  be analytic in a region of the complex plane containing the origin . A Padé approximation 

to the function  is defined by, 

 

Where  and  are polynomials in z of degree n and m respectively with leading coefficients unity. 

For eachpair of non-negative integers n and m,  and are those polynomials for which the Taylor 

series expansion of 

about the origin agrees with the Taylor series expansion of  for as many terms as possible. 

Since the ratio contains essentially  unknown coefficients, the requirement that 

 gives rise to  linear equations for these coefficients. 

In the present work, we utilized Padé approximations for following.ThePadé 

approximant  to the exponential function is defined as for follows:  

Let, 

 

where 

 

and 

 

Satisfying 

 

We will call  as (n,m)-Padé scheme of order (n + m). 

 

3.2 POSITIVITY-PRESERVING PADE` SCHEMES 

The positivity-preserving schemes are relatively a new research area; they have captured the interest of 

mathematicians and scientists. The notion of a positive scheme was introduced as a refinement of 0 L-stability. 

A positive scheme has a positive symbol on the positive real axis and is monotonically decreasing to 0. In the 

past few years, much more attention has been devoted to the development of positivity preserving schemes and 

the concept of positivity has come out prominently because it has been found to be an important factor in 

controlling spurious oscillations. Wade et al. [21] has discussed many application problems, taken from the 

literature, reflecting the importance of positivity-preserving schemes and concluded the increasing interest of 

researchers in the development and application of positivity-preserving related work. Wade et al. [13, 14] and 

Siddique [25] have used the positivity preserving Padé schemes to construct smoothing schemes for parabolic 

partial differential equations. 
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Definition 3.1: A numerical scheme is called positivity preserving if the graph of its stability function stays 

above x-axis and converges to zero monotonically. The (0, 2m -1)-Padé schemes are positivity-preserving 

schemes where m = 0,1,2,…..    (0,1)-Padé, (0,3)-Padé, (0,5)-Padé, etc are all positivity-preserving Padé` 

schemes. 

The graphs of amplification symbols of (0,1)-Padé, (0,3)-Padé, (0,5)-Padé are shown in Figure 1. 

 

 

Figure 1. Positivity preserving Padé` Figure 2. Non-positivity preserving Padé 

 

(1,1)-Padé, (1,2)-Padé and (2,2)-Padé are nonpositivity-preserving Padé. The graphs of amplification symbols of 

(1,1)-Padé, (1,2)-Padé and (2,2)-Padé are shown in Figure 2. 

 

The -Padé approximation of is approximated by  

 

where is the time step. 

Approximating the matrix exponential by (0,1)-Padé, denoted by to give 

 

which is the backward Euler’s method. 
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(0,3)-Padé approximation to the matrix exponential  is given by  

 

 

(0,5)-Padé approximation to the matrix exponential is given by 

 

 

The matrix A is a tridiagonal matrix. The number of diagonals of  increases with the powers of A. For example 

 is a five diagonal matrix,  is seven and  is a nine diagonal matrix and so ill-conditioning of the matrix A 

comes into picture. 

 

Definition 3.2: The condition number of a matrix A denoted by  and is defined by 

 

The condition number of a matrix measures the sensitivity of the solution of a system of linear equations to 

errors in the data.It gives an indication of the accuracy of the results from matrix inversion and the linear 

equations solutions.. 

 

3.3 PARAMETER ESTIMATION 

Step 1. For , solve in parallel. 

Step 2. Compute 

 

We have used this algorithm for the implementation of our Padé schemes. Maple is used to compute the poles 

and weights of Padé approximants. The poles and weights for (0, 3)-Padé are as follows: 

 

 

For (0,3)-Padé, we have = =1 and the algorithmsolve  

 

and compute 

 

 

IV.NUMERICAL SOLUTION AND RESULT 

In this section we present the performance of positivity preserving Padé schemes by implementing these 

schemes to solve three problems from literature. Twizell et al. [25], Ishak [26] and many others considered these 

problems as test problems. We have considered both homogeneous and inhomogeneous problems. All 
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positivity-preserving Padé schemes are implemented by using partial fraction decomposition techniques 

described earlier. We present graphs of the exact and numerical solution of different parameter values. 

Consider the resulting governing equation reduces to the simple form that is given by, 

 

in which  , with Dirichlet time-dependent boundary conditions on the boundary of the square 

defined by the lines , given by 

 

 

 

 

 

 

 

 

and nonlocal boundary condition 

 

with initial conditions .  

Theoretical solution is given by  

 

 

x y Numerical Solution Exact Solution Errors 

0.0 0.0 7.38905610 7.38905610 0.0000e+000 

0.1 0.1 9.04041689 9.02501350 1.7038e-003 

0.2 0.2 11.06951484 11.0231763804 6.0224e-003 

0.3 0.3 13.54531347 13.46373804 6.0224e-003 

0.4 0.4 16.55780082 16.44464677 6.8339e-003 

0.5 0.5 20.21997846 20.08553692 6.6489e-003 

0.6 0.6 24.67258833 24.53253020 5.6767e-003 

0.7 0.7 30.09034598 29.96410005 4.1956e-003 

0.8 0.8 36.69004490 36.59823444 2.5023e-003 

0.9 0.9 44.74237856 44.70118449 9.2069e-004 

1.0 1.0 54.59815003 54.59815003 0.0000e+000 

 

Table 1. Exact and Num. Sol. for (0, 1) – Padé 
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Figure 3. Graph of (0, 1) – Padé 

 

Table:1 and Figure:3 show the numerical and exact solution for Padé (0, 1), 

 

V.CONCLUSIONS 

The need for Reaction-Diffusion equation of space and time while modeling cancer tumor with profile treatment 

is the major concern of this paper. To do this, we successfully implement the positivity-preserving Padé 

numerical schemes and implementation of these schemes on two dimensional diffusion equations with nonlocal 

boundary conditions on four boundaries. We also affirm that the therapy-dependent killing rate K need not be a 

function of time or of both position and time only but could be dependent on the concentration of the cancer 

cells. We considered a test problems taken from the literature. To verify the accuracy of these schemes, the 

absolute relative errors between the exact and numerical solutions are computed. Numerical results show that 

these schemes are efficient and provide very accurate results. 
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