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ABSTRACT 

In this paper, we give some concept of compatible and weak compatible mappings and prove a fixed point 

theorem in intuitionistic fuzzy metric spaces under the condition of weak compatible mapping by using implicit 
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I.INTRODUCTION 

In 1965 the notion of fuzzy sets was initially investigated by Zadeh [15]. Since then, to use this concept in 

topology and analysis, many authors have expansively developed the theory of fuzzy sets and applications. As a 

generalization of fuzzy sets, Atanassov [2] introduced and studied the concept of intuitionistic fuzzy sets as a 

generalization of fuzzy sets [14]. In 2004, Park [10] defined the notion of intuitionistic fuzzy metric space with 

the help of continuous t-norms and continuous t-conorms. Recently, in 2006, Alaca et al [3] defined with the 

help of continuous t-norm and continuous t-conorms as a generalization of fuzzy metric space, the idea of 

intuitionistic fuzzy sets and intuitionistic fuzzy metric space. Samanta and Mondal [11, 12] introduced the 

definition of the intuitionistic gradation of openness. In 2004, Park [10] introduced and discussed a notion of 

intuitionistic fuzzy metric spaces (briefly, IFM-spaces), which is based both on the idea of intuitionistic fuzzy 

sets and the concept of a fuzzy metric space given by George and Veeramani [6]. Kramosil & Michlek [9] 

introduced the notion of Cauchy sequences in an intuitionistic fuzzy metric space and proved the well known 

fixed point theorem of Banach [5], Turkoglu et al [13] gave the generalization of Jungck’s [7] common fixed 

point theorem to intuitionistic fuzzy metric spaces, they first formulate the definition of weakly commuting and 

R-weakly commuting mapping in intuitionistic fuzzy metric space. The concept of compatible maps and 

compatible maps of type (A) and (B) was first formulated by Turkoglu, at. al [14] in intuitionistic fuzzy metric 

space. The aimed of this paper, we gave some concept of compatible and weak compatible mapping and we 

prove a fixed point theorem in intuitionistic fuzzy metric spaces under the condition of weak compatible 

mappings using implicit relations.    
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II. PRELIMINARIES 

DEFINITION (2.1)[10]: A binary operation *: [0, 1] × [0, 1][0, 1] is continuous t-norm if * is satisfying 

the following conditions: 

(i)  * is commutative and associative; 

(ii) * is continuous; 

(iii) a * 1 = a for all a∊ [0, 1]; 

(iv) a * b ≤ c * d whenever a ≤ c and b ≤ d for all a, b, c, d∊ [0, 1]. 

DEFINITION (2.2)[10]: A binary operation ◊: [0, 1] × [0, 1][0, 1] is continuous t-conorm if ◊ is satisfying 

the following conditions: 

(i) ◊ is commutative and associative; 

(ii) ◊ is continuous;   

(iii) a ◊ 0 = a for all a ∊ [0, 1]; 

(iv) a ◊ b ≥ c ◊ d whenever a ≤ c and b ≤ d for all a, b, c, d∊ [0, 1]. 

DEFINITION (2.3)[4]: A 5-tuple (X, M, N, *, ◊) is said to be an intuitionistic fuzzy metric space if X is an 

arbitrary set, * is a continuous t-norm, ◊ is a continuous t-conorm and M, N are fuzzy sets on X
2
× (0, ∞) 

satisfying the following conditions: 

(i) M(x, y, t) + N(x, y, t) ≤ 1 for all x, y ∊ X and t > 0; 

(ii) M(x, y, 0) = 0 for all x, y ∊ X; 

(iii) M(x, y, t) = 1 for all x, y ∊ X and t > 0 if and only if x = y; 

(iv) M(x, y, t) = M(y, x, t) for all x, y ∊ X and t > 0; 

(v) M(x, y, t) * M(y, z, s) ≤ M(x, z, t + s) for all x, y, z ∊ X and s, t > 0; 

(vi) For all x, y ∊ X, M(x, y, ): [0, ∞)→[0, 1] is continuous; 

(vii) (x, y, t) = 1 for all x, y∊ X and t > 0; 

(viii) N(x, y, 0) = 1 for all x, y ∊ X; 

(ix) N(x, y, t) = 0 for all x, y∊ X and t > 0 if and only if x = y; 

(x) N(x, y, t) = N(y, x, t) for all x, y∊ X and t > 0; 

(xi) N(x, y, t) ◊ N(y, z, s) ≥ N(x, z, t + s) for all x, y, z∊ X and s, t > 0; 

(xii) For all x, y ∊ X, N(x, y, ) : [0, ∞)→[0, 1] is continuous; 

(xiii)  (x, y, t) = 0 for all x, y in X; 

Then (M, N) is called an intuitionistic fuzzy metric on X. The functions M(x, y, t) and N(x, y, t) denote the 

degree of nearness and the degree of non-nearness between x and y with respect to t, respectively.  

REMARK (2.1): Every fuzzy metric space (X, M, *) is an intuitionistic fuzzy metric space of the form       

(X, M, 1-M, *, ◊) such that t-norm * and t-conorm ◊ are associated as x ◊ y = 1- ( (1-x) * (1-y) ) for all x, y∊ X. 

REMARK (2.2): In intuitionistic fuzzy metric space X, M(x, y, ) is non-decreasing and N(x, y, ) is          

non-increasing for all x, y ∊ X. 
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EXAMPLE (2.1): Let (x, d) be a metric space, define t-norm a * b = min {a, b} and t-conorm                         

a ◊ b = max {a, b} and for all x, y ∊ X and t > 0, 

           Md (x, y, t) =   , Nd (x, y, t) =  

Then (X, M, N, *, ◊) is an intuitionistic fuzzy metric space. We call this intuitionistic fuzzy metric (M, N) 

induced by the metric d the standard intuitionistic fuzzy metric. 

DEFINITION (2.4)[4]: Let (X, M, N, *, ◊) be an intuitionistic fuzzy metric space. Then 

(a)  a sequence {xn} in X is said to be Cauchy sequence if, for all t > 0 and p > 0, 

(xn+p, xn, t) = 1, (xn+p, xn, t) = 0. 

     (b)  a sequence {xn} in X is said to be convergent to a point x∊ X if, for all t > 0, 

(xn, x, t) = 1, (xn, x, t) = 0. 

Since * and ◊ are continuous, the limit is uniquely determined from (v) and (xi) of definition (3), respectively. 

DEFINITION (2.5)[4]: An intuitionistic fuzzy metric space (X, M, N, *, ◊) is said to be complete if and only 

if every Cauchy sequence in X is convergent. 

DEFINITION (2.6)[14]: Let A and B be mappings from an intuitionistic fuzzy metric space (X, M, N, *, ◊) 

into itself. Then the maps A and B are said to be compatible if, for all t > 0,  

(ABxn, BAxn, t) = 1 and (ABxn, BAxn, t) = 0                                       

whenever {xn} is a sequence in X such that xn = xn = x for some x∊ X.  

DEFINITION (2.7)[8]: Two self maps A and B in a intuitionistic fuzzy metric space (X, M, N, *, ◊) is said 

to be weak compatible if they commute at their coincidence points.  i.e. Ax = Bx for some x in X, then         

ABx = BAx.  

DEFINITION (2.8)[6]: Let (X, M, N, *,◊) be an intuitionistic fuzzy metric space. A and B be self maps in X. 

Then a point x in X is called a coincidence point of A and B iff Ax = Bx. In this case y = Ax = Bx is called a 

point of coincidence of A and B. 

It is easy to see that two compatible maps are weakly compatible but converse is not true. 

DEFINITION (2.9)[1]: Two self maps A and B in a intuitionistic fuzzy metric space (X, M, N, *, ◊) is said 

to be occasionally weakly compatible (owc) iff there is a point x in X which is coincidence point of A and B at 

which A and B commute. 

LEMMA (2.1)[4]: Let (X, M, N, *, ◊) be an intuitionistic fuzzy metric space and {yn} be a sequence in X. if 

there exists a number k∊ (0, 1), such that M(yn+2, yn+1, kt) ≥ M(yn+1, yn, t) and N(yn+2, yn+1, kt) ≤ N(yn+1, yn, t) 

for all t > 0 and n = 1, 2, … , then {yn} is a Cauchy sequence in X.   

LEMMA (2.2)[13]: Let (X, M, N, *, ◊) be an intuitionistic fuzzy metric space and for all x, y in X, t > 0 and 

if there exists a number k∊ (0, 1), M(x, y, kt) ≥ M(x, y, t) and N(x, y, kt) ≤ N(x, y, t), then x = y. 
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III.MAIN RESULT 

IMPLICIT RELATIONS: Let  be the set of all continuous and increasing functions : [0, 1]  [0, 1], in 

each coordinate and (t)  t for all t  [0, 1). And also let  be the set of all continuous and decreasing functions 

 : [0, 1]  [0, 1] in each coordinates and (t) < t, for all t [0, 1).  

THEOREM (3.1): Let (X, M, N, , ◊) be an intuitionistic fuzzy metric space. Let A, B, S and T be mappings 

from X into itself satisfying: 

(3.1) S(X)  B(X) and T(X)  A(X); 

(3.2) if one of A(X), B(X), S(X) and T(X) is complete subset of X; 

(3.3) A and S have a coincidence point; 

(3.4) B and T have a coincidence point; 

(3.5) there exists k (0, ) and t 0 such that  

M(Sx, Ty, kt)  (Min{M(Ax, By, t), M(Ax, Sx, t), M(By, Ty, t), M(By, Sx, t), M(Ax, Sy, (2-)t)}) 

and N(Sx, Ty, kt)  (Max{N(Ax, By, t), N(Ax, Sx, t), N(By, Ty, t), N(By, Sx, t), N(Ax, Sy, (2-)t)}) 

for all x, y X,  (0, 2) and   ,   . If the pair (A, S) and (B, T) are weakly compatible then A, B, S and 

T have a unique common fixed point in X. 

PROOF: Since we have S(X)  B(X) and T(X)  A(X), so we define two sequences {xn} and {yn} in X such 

that y2n+1 = Sx2n = Bx2n+1, y2n+2 = Tx2n+1 = Ax2n+2                                             (3.6) 

Now, we take x = x2n and y = x2n+1 in (3.5), we get 

M(Sx2n, Tx2n+1, kt)  (Min{M(Ax2n, Bx2n+1, t), M(Ax2n, Sx2n, t), M(Bx2n+1, Tx2n+1, t), M(Bx2n+1, Sx2n, t),  

                                               M(Ax2n, Sx2n+1, (2-)t)}) 

and N(Sx2n, Tx2n+1, kt)  (Max{N(Ax2n, Bx2n+1, t), N(Ax2n, Sx2n, t), N(Bx2n+1, Tx2n+1, t), N(Bx2n+1, Sx2n, t),  

                                                       N(Ax2n, Sx2n+1, (2-)t)}). 

For  = 1 and by (3.6), we get 

M(y2n+1, y2n+2, kt)  (Min{M(y2n, y2n+1, t), M(y2n, y2n+1, t), M(y2n+1, y2n+2, t), M(y2n+1, y2n+1, t),  

                                             M(y2n, y2n+2, (2-)t)}) 

                               (Min{M(y2n, y2n+1, t), M(y2n+1, y2n+2, 1, M(y2n, y2n+2, t)}) 

                              (Min{M(y2n, y2n+1, t), M(y2n+1, y2n+2, M(y2n, y2n+2, t)}) 

                              (Min{M(y2n, y2n+1, t), M(y2n, y2n+1, t)}) 

                              (M(y2n, y2n+1, t)) 

and N(y2n+1, y2n+2, kt)  (Max{N(y2n, y2n+1, t), N(y2n, y2n+1, t), N(y2n+1, y2n+2, t), N(y2n+1, y2n+1, t),  

                                                     N(y2n, y2n+2, (2-)t)}) 

                                      (Max{N(y2n, y2n+1, t), N(y2n+1, y2n+2, 0, N(y2n, y2n+2, t)}) 

                                      (Max{N(y2n, y2n+1, t), N(y2n+1, y2n+2, N(y2n, y2n+2, t)}) 

                                      (Max{N(y2n, y2n+1, t), N(y2n, y2n+1, t)}) 

                                      (N(y2n, y2n+1, t)). 
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In view of  and , we get  

M(y2n+1, y2n+2, kt)  M(y2n, y2n+1, t) and N(y2n+1, y2n+2, kt)  N(y2n, y2n+1, t). 

By lemma (2.1), we get {yn} is Cauchy sequence in X and it converges to a point z in X. 

Therefore, its subsequences {y2n}, {y2n+1}, {y2n+2} are also converges to a point z in X. That is,  

Ax2n+2 = Bx2n+1 = Sx2n = Tx2n+1 = z as n. 

Now, we suppose that A(X) is complete subset of X. Then we get Aw = z.         (3.7) 

Now, we take x = w and y = x2n+1 in (3.5), we get 

M(Sw, Tx2n+1, kt)  (Min{M(Aw, Bx2n+1, t), M(Aw, Sw, t), M(Bx2n+1, Tx2n+1, t), M(Bx2n+1, Sw, t),  

                                             M(Aw, Sx2n+1, (2-)t)}) 

and N(Sw, Tx2n+1, kt)  (Max{N(Aw, Bx2n+1, t), N(Aw, Sw, t), N(Bx2n+1, Tx2n+1, t), N(Bx2n+1, Sw, t),  

                                                     N(Aw, Sx2n+1, (2-)t)}). 

Taking n, we get 

M(Sw, z, kt)(Min{M(Aw, z, t), M(Aw, Sw, t), M(z, z, t), M(z, Sw, t), M(Aw, z, (2-)t)}) 

and N(Sw, z, kt)(Max{N(Aw, z, t), N(Aw, Sw, t), N(z, z, t), N(z, Sw, t), N(Aw, z, (2-)t)}). 

For  = 1 and by (3.7), we get 

M(Sw, z, kt)  (Min{M(z, z, t), M(z, Sw, t), M(z, Sw, t), 1, M(z, Sw, t), M(z, z, t)}) 

                      (Min{1, M(z, Sw, t), M(z, Sw, t), 1}) 

                      (M(z, Sw, t)) 

and N(Sw, z, kt)  (Max{N(z, z, t), N(z, Sw, t), N(z, Sw, t), 0, N(z, Sw, t), N(z, z, t)}) 

                             (Max{0, N(z, Sw, t), N(z, Sw, t), 0}) 

                             (N(z, Sw, t)). 

In view of  and , we get M(z, Sw, kt)  M(z, Sw, t) and N(z, Sw, kt)  N(z, Sw, t) 

By lemma (2.2), we get z = Sw. That is Sw = z = Aw. 

Therefore, w is coincidence point of A and S. 

Now, since S(X)  B(X), Therefore, z = Sv  S(X)  B(X), this gives z B(X). Now let Bv = z, 

we take x = x2n and y = v in (3.5), we get 

M(Sx2n, Tv, kt) ≥ (Min{M(Ax2n, Bv, t), M(Ax2n, Sx2n, t), M(Bv, Tv, t), M(Bv, Sx2n, αt), M(Ax2n, Sv, (2-α)t)}) 

and N(Sx2n, Tv, kt) ≤ (Max{N(Ax2n, Bv, t), N(Ax2n, Sx2n, t), N(Bv, Tv, t), N(Bv, Sx2n, αt),  

                                                 N(Ax2n, Sv, (2-α)t)}). 

By (3.6) and for Bv = z, we have 

M(y2n+1, Tv, kt) ≥ (Min{M(y2n, z, t), M(y2n, y2n+1, t), M(z, Tv, t), M(z, y2n+1, αt), M(y2n, z, (2-α)t)}) 

and N(y2n+1, Tv, kt) ≤ (Max{N(y2n, z, t), N(y2n, y2n+1, t), N(z, Tv, t), N(z, y2n+1, αt), N(y2n, z, (2-α)t)}). 

For α = 1 and taking n∞, we get 

M(z, Tv, kt) ≥ (Min{M(z, z, t), M(z, z, t), M(z, Tv, t), M(z, z, t), M(z, z, t)})  

                    ≥ (Min{1, 1, M(z, Tv, t), 1, 1}) 

                    ≥ (M(z, Tv, t)) 
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and N(z, Tv, kt) ≤ (Max{N(z, z, t), N(z, z, t), N(z, Tv, t), N(z, z, t), N(z, z, t)}) 

                           ≤ (Max{0, 0, N(z, Tv, t), 0, 0}) 

                           ≤ (N(z, Tv, t)). 

In view of  and , we get M(z, Tv, kt)  M(z, Tv, t) and N(z, Tv, kt)  N(z, Tv, t). 

By lemma (2.2), we get z = Tv. That is Tv = z = Bv. 

Therefore, v is coincidence point of T and B. 

Now, since (A, S) is weakly compatible, therefore A and S commute at coincidence point. That is ASw = SAw, 

this gives Az = Sz.                                                                                (3.8) 

And (B, T) is weakly compatible, therefore BTv = TBv, this gives Bz = Tz.                (3.9) 

Now, firstly we will show thai Sz = z. Take x = z and y = x2n+1 in (3.5), we get 

M(Sz, Tx2n+1, kt) ≥ (Min{M(Az, Bx2n+1, t), M(Az, Sz, t), M(Bx2n+1, Tx2n+1, t), M(Bx2n+1, Sz, αt),  

                                            M(Az, Sx2n+1, (2-α)t)})  

and N(Sz, Tx2n+1, kt) ≤ (Max{N(Az, Bx2n+1, t), N(Az, Sz, t), N(Bx2n+1, Tx2n+1, t), N(Bx2n+1, Sz, αt),  

                                                   N(Az, Sx2n+1, (2-α)t)}). 

From (3.6) and (3.8), we get 

M(Sz, y2n+2, kt) ≥ (Min{M(Sz, y2n+1, t), M(Sz, Sz, t), M(y2n+1, y2n+2, t), M(y2n+1, Sz, αt), M(Sz, y2n+2, (2-α)t)}) 

and N(Sz, y2n+2, kt) ≤ (Max{N(Sz, y2n+1, t), N(Sz, Sz, t), N(y2n+1, y2n+2, t), N(y2n+1, Sz, αt),  

                                                 N(Sz, y2n+2, (2-α)t)}). 

For α = 1 and taking n∞, we get 

M(Sz, z, kt) ≥ (Min{M(Sz, z, t), 1, M(z, z, t), M(z, Sz, t), M(Sz, z, t)}) 

                    ≥ (M(Sz, z, t)) 

and N(Sz, z, kt) ≤ (Max{N(Sz, z, t), 0, N(z, z, t), N(z, Sz, t), N(Sz, z, t)}) 

                          ≤ (N(Sz, z, t)). 

In view of  and , we get M(Sz, z, kt)  M(Sz, z, t) and N(Sz, z, kt)  N(Sz, z, t). 

By lemma (2.2), we get Sz = z. That is Sz = z = Az.                                          (3.10) 

Again we will show that Tz = z. Take x = x2n and y = z in (3.5), we get 

M(Sx2n, Tz, kt) ≥ (Min{M(Ax2n, Bz, t), M(Ax2n, Sx2n, t), M(Bz, Tz, t), M(Bz, Sx2n, αt), M(Ax2n, Sz, (2-α)t)})  

and N(Sx2n, Tz, kt) ≤ (Max{N(Ax2n, Bz, t), N(Ax2n, Sx2n, t), N(Bz, Tz, t), N(Bz, Sx2n, αt),  

                                                 N(Ax2n, Sz, (2-α)t)}). 

From (3.6) and (3.9), we get 

M(y2n+1, Tz, kt) ≥ (Min{M(y2n, Tz, t), M(y2n, y2n+1, t), M(Tz, Tz ,t), M(Tz, y2n+1, αt), M(y2n, z, (2-α)t)}) 

and N(y2n+1, Tz, kt) ≤ (Max{N(y2n, Tz, t), N(y2n, y2n+1, t), N(Tz, Tz ,t), N(Tz, y2n+1, αt), N(y2n, z, (2-α)t)}). 

For α = 1 and taking n∞, we get 

M(z, Tz, kt) ≥ (Min{M(z, Tz, t), M(z, z, t), 1, M(Tz, z, t), M(z, z, t)}) 

                    ≥ (M(z, Tz, t)) 

and N(z, Tz, kt) ≤ (Max{N(z, Tz, t), N(z, z, t), 0, N(Tz, z, t), N(z, z, t)}) 
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                          ≤ (N(z, Tz, t)).  

In view of  and , we get M(z, Tz, kt)  M(z, Tz, t) and N(z, Tz, kt)  N(z, Tz, t). 

By lemma (2.2), we get z = Tz. That is Tz = z = Bz.                                             (3.11) 

Combining (3.10) and (3.11), we get Az = Bz = Sz = Tz = z. 

Therefore, z is a common fixed point of A, B, S and T. 

For uniqueness, let w be another fixed point of A, B, S and T. Then we have Aw = Bw = Sw = Tw = w.  

Take x = z and y = w in (3.5), we get 

M(Sz, Tw, kt)  (Min{M(Az, Bw, t), M(Az, Sz, t), M(Bw, Tw, t), M(Bw, Sz, t), M(Az, Sw, (-2)t)}) 

M(z, w, kt)  (Min{M(z, w, t), M(z, z, t), M(w, w, t), M(w, z, t), M(z, w, (-2)t)}) 

and N(Sz, Tw, kt)  (Max{N(Az, Bw, t), N(Az, Sz, t), N(Bw, Tw, t), N(Bw, Sz, t), N(Az, Sw, (-2)t)}) 

N(z, w, kt)  (Max{N(z, w, t), N(z, z, t), N(w, w, t), N(w, z, t), N(z, w, (-2)t)}). 

For α = 1, we get M(z, w, kt)  (M(z, w, t)) and N(z, w, kt)  (N(z, w, t)). 

In view of  and , we get M(z, w, kt)  M(z, w, t) and N(z, w, kt)  N(z, w, t). 

By lemma (2.2), we get z = w. Hence z is unique common fixed point of A, B, S and T.    

If we take T = S in Theorem (3.1), we have the following result. 

COROLLARY (3.2): Let (X, M, N, , ◊) be an intuitionistic fuzzy metric space. Let A, B and S be mappings 

from X into itself satisfying: 

(3.12) S(X)  B(X) and S(X)  A(X); 

(3.13) if one of A(X), B(X) and S(X) is complete subset of X; 

(3.14) A and S have a coincidence point; 

(3.15) B and S have a coincidence point; 

(3.16) there exists k (0, ) and t 0 such that  

M(Sx, Sy, kt)  (Min{M(Ax, By, t), M(Ax, Sx, t), M(By, Sy, t), M(By, Sx, t), M(Ax, Sy, (-2)t)}) 

and N(Sx, Sy, kt)  (Max{N(Ax, By, t), N(Ax, Sx, t), N(By, Sy, t), N(By, Sx, t), N(Ax, Sy, (-2)t)}) 

for all x, y X,  (0, 2) and   ,   . If the pair (A, S) and (B, S) are weakly compatible then A, B and S 

 have a unique common fixed point in X.  

EXAMPLE (3.1): Let X = { , n = 1, 2, 3, . . .}  {0} with the usual metric and, for all t  0 and  x, y  X, 

define (M, N) by 

M(x, y, t) =     and N(x, y, t) =  

Cleary, (X, M, N, , ◊) is a intuitionistic fuzzy metric space, where  and ◊ are defined by a  b = Min{a, b}  

and a ◊ b = Max{a, b} respectively. Let A, B, S and T be defined by  

         Ax = , Sx =  Bx = , Tx =  for all x  X. 

Then, we have A(X) = { 1, 2, 3, . . .}  {0}  { 1, 2, 3, . . .}  {0} = S(X) 
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B(X) = { 1, 2, 3, . . .}  {0}  { 1, 2, 3, . . .}  {0} = T(X). 

Also, the condition (3.5) of theorem (3.1) is satisfied and A, B, S and T are continuous, if  is increasing in each 

of its coordinate and (t)  t, and  is decreasing in each of its coordinates and (t)  t for all t [0, 1). Further, 

the pairs (A, S) and (B, T) are weak compatible if 

, where {xn} is a sequence in X, such that 

  for some 0  X.  

Thus all the conditions of Theorem (3.1) are satisfied and also 0 is the unique common fixed point of A, B, S 

and T. 

 

REFERENCES 

[1]. M. A. Al-Thaga and N. Shahzad: Generalised I-nonexpansive self maps and invariants approximations. 

Acta Math. Sin., 24(5):867:876, 2008. 

[2]. C. Alaca: On fixed point theorems in intuitionistic fuzzy metric spaces, Commun. Korean Math. Soc. 

24(2009), 565-579. 

[3]. C. Alaca, D. Turkoglu, C. Yildiz: Common fixed points of compatible maps in intuitionistic fuzzy metric 

spaces, Southeast Asian Bull. Math. 32(2008), 21-33. 

[4]. C. Alaca, D. Turkoglu and C. Yildiz: Fixed points in intuitionistic fuzzy metric spaces, Smallerit Choas, 

Solitons & Fractals, 29(5)(2006), 1073-1078.  

[5]. S. Banach: Theories, lies, operations. Laniaries Manograie Mathematyezene, warsaw, Poland, 1932. 

[6]. A. George, P. Veeramani: On some result in fuzzy metric space, Fuzzy Sets Systems 64(1994), 395-399. 

[7]. G. Jungck: commuting mappings and fixed points Amer. Math. Monthly, 83(1976), 261- 263. 

[8]. Jungck, G.: Compatible mappings and common fixed points, Internat. J. Math. Sci. 9(1986),   771-779. 

[9]. J. Kramosil, J. Michalek: Fuzzy metric and Statistical metric spaces, Kybernetica, 11(1975),   326-334. 

[10]. J. H. Park: Intuitionistic fuzzy metric spaces, Chaos Solit. Fract. 22(2004), 1039-1046. 

[11]. S. K. Samanta, T. K. Mondal: Intuitionistic gradation of openness: intuitionistic fuzzy topology, Busefal 

73(1997), 8-17. 

[12]. S. K. Samanta, T. K. Mondal: On intuitionistic gradation of openness, Fuzzy Sets Syst.131(2002), 323-

336. 

[13]. D. Turkoglu, C. Alace and C. Yildiz: Compatible maps and compatible maps of types (α) and (β) in 

intuitionistic fuzzy metric spaces, Demonstratio Math. 39(2006), 671-684. 

[14]. D.Turkoglu, I. Altun, and Y. J. Cho: Common fixed points of compatible mappings of type (I) and (II) in 

fuzzy metric spaces, J. Fuzzy Math. 15(2007), 435-448.  

[15]. L. A. Zadeh: Fuzzy sets, Infor. and Control. 8 (1965), 338-353. 

                          


