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ABSTRACT

In this paper, we give some concept of compatible and weak compatible mappings and prove a fixed point
theorem in intuitionistic fuzzy metric spaces under the condition of weak compatible mapping by using implicit
relations.

Keywords: coincidence point, common fixed point, intuitionistic fuzzy metric space, weak
compatible maps.

2000 Mathematics Subject Classification: 47H10, 54H25.

I.INTRODUCTION

In 1965 the notion of fuzzy sets was initially investigated by Zadeh [15]. Since then, to use this concept in
topology and analysis, many authors have expansively developed the theory of fuzzy sets and applications. As a
generalization of fuzzy sets, Atanassov [2] introduced and studied the concept of intuitionistic fuzzy sets as a
generalization of fuzzy sets [14]. In 2004, Park [10] defined the notion of intuitionistic fuzzy metric space with
the help of continuous t-norms and continuous t-conorms. Recently, in 2006, Alaca et al [3] defined with the
help of continuous t-norm and continuous t-conorms as a generalization of fuzzy metric space, the idea of
intuitionistic fuzzy sets and intuitionistic fuzzy metric space. Samanta and Mondal [11, 12] introduced the
definition of the intuitionistic gradation of openness. In 2004, Park [10] introduced and discussed a notion of
intuitionistic fuzzy metric spaces (briefly, IFM-spaces), which is based both on the idea of intuitionistic fuzzy
sets and the concept of a fuzzy metric space given by George and Veeramani [6]. Kramosil & Michlek [9]
introduced the notion of Cauchy sequences in an intuitionistic fuzzy metric space and proved the well known
fixed point theorem of Banach [5], Turkoglu et al [13] gave the generalization of Jungck’s [7] common fixed
point theorem to intuitionistic fuzzy metric spaces, they first formulate the definition of weakly commuting and
R-weakly commuting mapping in intuitionistic fuzzy metric space. The concept of compatible maps and
compatible maps of type (A) and (B) was first formulated by Turkoglu, at. al [14] in intuitionistic fuzzy metric
space. The aimed of this paper, we gave some concept of compatible and weak compatible mapping and we
prove a fixed point theorem in intuitionistic fuzzy metric spaces under the condition of weak compatible

mappings using implicit relations.
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I1. PRELIMINARIES

DEFINITION (2.1)[10]: A binary operation *: [0, 1] x [0, 1]—[0, 1] is continuous t-norm if * is satisfying
the following conditions:

(i) *is commutative and associative;

(ii) * is continuous;

(iii) a* 1 =aforall ae [0, 1];

(iv)a *b <c * d whenever a<cand b <d forall a, b, c, de [0, 1].

DEFINITION (2.2)[10]: A binary operation ¢: [0, 1] x [0, 1]—[0, 1] is continuous t-conorm if ¢ is satisfying
the following conditions:

(1) ¢ is commutative and associative;

(ii) ¢ is continuous;

(iii)a® 0=aforall a € [0, 1];

(iv)a®b>c ¢ dwhenevera<candb<dforall a,b,c,de [0, 1].

DEFINITION (2.3)[4]: A 5-tuple (X, M, N, *, 0) is said to be an intuitionistic fuzzy metric space if X is an
arbitrary set, * is a continuous t-norm, ¢ is a continuous t-conorm and M, N are fuzzy sets on X< (0, «)
satisfying the following conditions:

() M(x,y,t) + N(x, y,t) < 1 forall x,y € Xand t > 0;

(i) M(x, y, 0) =0 forall x, y € X;

(i) M(x,y,t)=1forall x,ye Xandt>0ifand only if x = y;

(iv) M(x, y, t) = M(y, x, t) for all x, y e X and t > 0;

V) M(x, y, t) * M(y, z, s) <M(x, z, t +s) forall x,y, z e Xand s, t > 0;

(vi) For all x, y € X, M(X, Yy, -): [0, ©)—[0, 1] is continuous;

(vii) lim;_,.. M(x, y,t) = L forall x, ye Xand t > 0;

(viii) N(x,y,0)=1forall x,y € X;

(ix) N(x, y, t) =0 for all x, ye Xand t> 0 ifand only if x = y;

(X) N(x, y, t) = N(y, x, t) for all x, ye X and t > 0;

(xi) N(x, y, t) O N(y, z, s) > N(x, z, t + s) for all X, y, ze X and s, t > 0;

(xii) For all x, y € X, N(X, Y, -) : [0, ©)—[0, 1] is continuous;

(xiii) limg._ N(x,y, t)=0forall x, yinX;

Then (M, N) is called an intuitionistic fuzzy metric on X. The functions M(x, vy, t) and N(x, y, t) denote the
degree of nearness and the degree of non-nearness between x and y with respect to t, respectively.

REMARK (2.1): Every fuzzy metric space (X, M, *) is an intuitionistic fuzzy metric space of the form
(X, M, 1-M, *, ) such that t-norm * and t-conorm ¢ are associated as x ¢ y = 1- ( (1-x) * (1-y) ) for all x, ye X.
REMARK (2.2): In intuitionistic fuzzy metric space X, M(X, y, -) is non-decreasing and N(x, y, -) is

non-increasing for all x, y € X.
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EXAMPLE (2.1): Let (x, d) be a metric space, define t-norm a * b = min {a, b} and t-conorm
a0 b=max {a, b} and for all x, y e Xand t > 0,

Mq(x Y, t) = Ng (X, y, ) = =230

t+d(x 1’ t+dix ¥
Then (X, M, N, *, 0) is an intuitionistic fuzzy metric space. We call this intuitionistic fuzzy metric (M, N)
induced by the metric d the standard intuitionistic fuzzy metric.
DEFINITION (2.4)[4]: Let (X, M, N, *, 0) be an intuitionistic fuzzy metric space. Then
(@) asequence {x,} in X is said to be Cauchy sequence if, forall t >0 and p >0,
limy o M (Xnap, X, 1) = 1, Himy e N (Xnap, Xp, 1) = 0.
(b) asequence {x,} in X is said to be convergent to a point xe X if, for all t > 0,
limy, .. M (X, X, 1) = 1, limy,_... N(x,, X, t) = 0.
Since * and ¢ are continuous, the limit is uniquely determined from (v) and (xi) of definition (3), respectively.
DEFINITION (2.5)[4]: An intuitionistic fuzzy metric space (X, M, N, *, 0) is said to be complete if and only
if every Cauchy sequence in X is convergent.
DEFINITION (2.6)[14]: Let A and B be mappings from an intuitionistic fuzzy metric space (X, M, N, *, 0)
into itself. Then the maps A and B are said to be compatible if, for all t > 0,
lim,,_,. M(ABX,, BAX,, t) = 1 and lim,_.. N(ABX,, BAX,, t) =0

whenever {x,} is a sequence in X such that lim,,_, .. Ax, = lim,_,.. Ex, = x for some xe X.

DEFINITION (2.7)[8]: Two self maps A and B in a intuitionistic fuzzy metric space (X, M, N, *, ¢) is said
to be weak compatible if they commute at their coincidence points. i.e. Ax = Bx for some x in X, then
ABX = BAX.

DEFINITION (2.8)[6]: Let (X, M, N, *,0) be an intuitionistic fuzzy metric space. A and B be self maps in X.
Then a point x in X is called a coincidence point of A and B iff Ax = Bx. In this case y = Ax = Bx is called a
point of coincidence of A and B.

It is easy to see that two compatible maps are weakly compatible but converse is not true.

DEFINITION (2.9)[1]: Two self maps A and B in a intuitionistic fuzzy metric space (X, M, N, *, 0) is said
to be occasionally weakly compatible (owc) iff there is a point x in X which is coincidence point of A and B at
which A and B commute.

LEMMA (2.1)[4]: Let (X, M, N, *, 0) be an intuitionistic fuzzy metric space and {y,} be a sequence in X. if
there exists a number ke (0, 1), such that M(Yn+2, Yn+1, kt) > M(¥n+1, Yns 1) @0d N(Vre2, Yns, Kt) < N(Vnets Yis 1)
forallt>0andn=1,2, ..., then {y,} is a Cauchy sequence in X.

LEMMA (2.2)[13]: Let (X, M, N, *, 0) be an intuitionistic fuzzy metric space and for all x, y in X, t > 0 and
if there exists a number ke (0, 1), M(x, y, kt) > M(x, y, t) and N(X, y, kt) <N(x, y, t), then x =y.
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1H1.MAIN RESULT

IMPLICIT RELATIONS: Let ¢ be the set of all continuous and increasing functions ¢: [0, 1] — [0, 1], in
each coordinate and ¢(t) >t for all t € [0, 1). And also let y be the set of all continuous and decreasing functions
v : [0, 1] — [0, 1] in each coordinates and ¢(t) <t, for all t €[0, 1).

THEOREM (3.1): Let (X, M, N, *, 0) be an intuitionistic fuzzy metric space. Let A, B, S and T be mappings
from X into itself satisfying:

(3.1) S(X) = B(X) and T(X) = A(X);

(3.2) if one of A(X), B(X), S(X) and T(X) is complete subset of X;

(3.3) A and S have a coincidence point;

(3.4) B and T have a coincidence point;

(3.5) there exists ke (O,%) and t> 0 such that

M(Sx, Ty, kt) > ¢(Min{M(AX, By, t), M(AX, Sx, t), M(By, Ty, t), M(By, Sx, at), M(AX, Sy, (2-a)t)})
and N(Sx, Ty, kt) < y(Max{N(AX, By, t), N(AX, Sx, t), N(By, Ty, t), N(By, Sx, at), N(AX, Sy, (2-a)t)})
forall x, ye X, ae (0, 2) and ¢ € ¢, v € . If the pair (A, S) and (B, T) are weakly compatible then A, B, S and
T have a unique common fixed point in X.
PROOF: Since we have S(X) < B(X) and T(X) < A(X), so we define two sequences {x,} and {y,} in X such
that Yon+1 = SXon = BXon+1, Yonez = TXons1 = AXonez (3.6)
Now, we take X = X,pand y = Xon41 in (3.5), we get
M(SXan, TXan+1, kt) 2 ¢(MIN{M(AXzn, BXon+1, t), M(AXan, SXon, ), M(BXan+1, TXan+1, 1), M(BXon+1, SXon, ait),
M(AXzn, SXans1, (2-0)t)})
and N(SXan, TXone1, Kt) < w(Max{N(AXzn, BXons1, 1), N(AXan, SXon, 1), N(BXan+1, TXone1s 1), N(BXone1, SXon, at),
N(AXzn, SXons1, (2-a)t)}).
For o =1 and by (3.6), we get
M(Yan+1, Yanse2, Kt) 2 ¢(MIn{M(Yzn, Yan+1, ), M(Y2n, Yansts £), M(Yane1, Yonszs £), M(Yane, Yonet, Ot),
M(Yans Yansas (2-0))})
= O(MI{M(Yzn, Yans1, 1), M(Yane1, Yaneas 1, M(Yan, Yaneas )3)
> O(MIn{M(Yzn, Yzns1, 1); M(Yans1, Yans2e M(Yzn, Yonss D)3)
2 ¢(MIn{M(Yzn, Y2n+1, ), M(Y2n, Yane1, 1)
2 ¢(M(Yzn, Yanea, 1))
and N(Yzn+1, Yans2, Kt) < w(Max{N(yzn, Yzn+1, 1), N(Yzn, Yane1, 1), N(Vanias Yansz, 1), N(Vansa, Yanet, at),
N(Yzn, Yans2, (2-0)1)})
< y(Max{N(yzn, Y2ns1, 1), N(Yans1, Yanez, 00 N(YVan, Yans2, 1)})
S y(Max{N(Yzn, Yan+1, 1), N(Vans1, Yonsez, N(Yan, Yonsz, 1)})
< w(Max{N(Yzn, Yan+1, 1), NYan Yanea, )
S W(N(Y2n Yoner, 1))
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In view of ¢ and v, we get
M(Yans1, Yonez, Kt) 2 M(Y2n, Yanet, 1) @0d N(Yans1, Yonez, KE) < N(Yan, Yanst, ).
By lemma (2.1), we get {y,} is Cauchy sequence in X and it converges to a point z in X.
Therefore, its subsequences {Yan}, {Yan+1}: {Yan+2} are also converges to a point z in X. That is,
AXonsz = BXone1 = SXon = TXope1 = Z @S N—>00,
Now, we suppose that A(X) is complete subset of X. Then we get Aw = z. 3.7
Now, we take X = w and y = Xpn+q in (3.5), we get
M(SW, TXon+1, kt) = d(Min{M(Aw, BXzns1, 1), M(AW, Sw, t), M(BXan+1, TXon+1, ), M(BXone1, SW, at),
M(AW, SXans1, (2-0)t)})
and N(Sw, TXgn+1, kt) < w(Max{N(Aw, BXan+1, t), N(Aw, Sw, t), N(BXzn+1, TXon+1, t), N(BXons1, SW, at),
N(AW, SXan1, (2-0)1)}).
Taking h—o, we get
M(Sw, z, kt)=p(Min{M(Aw, z, t), M(Aw, Sw, t), M(z, z, t), M(z, Sw, at), M(Aw, z, (2-a)t)})
and N(Sw, z, kt)<y(Max{N(Aw, z, t), N(Aw, Sw, t), N(z, z, t), N(z, Sw, at), N(Aw, z, (2-a)t)}).
For a =1 and by (3.7), we get
M(Sw, z, kt) > ¢(Min{M(z, z, t), M(z, Sw, t), M(z, Sw, t), 1, M(z, Sw, t), M(z, z, t)})
> ¢(Min{1, M(z, Sw, t), M(z, Sw, t), 1})
> ¢(M(z, Sw, t))
and N(Sw, z, kt) < y(Max{N(z, z, t), N(z, Sw, t), N(z, Sw, t), 0, N(z, Sw, t), N(z, z, t)})
< wy(Max{0, N(z, Sw, t), N(z, Sw, t), 0})
< y(N(z, Sw, 1)).
In view of ¢ and v, we get M(z, Sw, kt) > M(z, Sw, t) and N(z, Sw, kt) < N(z, Sw, t)
By lemma (2.2), we get z = Sw. That is Sw =2z = Aw.
Therefore, w is coincidence point of A and S.
Now, since S(X) < B(X), Therefore, z = Sv € S(X) < B(X), this gives ze B(X). Now let Bv =z,
we take X = X,, and y = v in (3.5), we get
M(SXzn, Tv, kt) > ¢(Min{M(AX,,, Bv, t), M(AXzn, SXon, t), M(BvV, Tv, t), M(BV, SXa,, at), M(Ax,, SV, (2-a)t)})
and N(SXan, Tv, kt) < yw(Max{N(Axzn, BV, t), N(AXzn, SXzn, t), N(Bv, Tv, t), N(Bv, Sx,n, at),
N(AXz, Sv, (2-0)t)}).
By (3.6) and for Bv = z, we have
M(Yan+1, TV, kt) > ¢(MIn{M(y2n, Z, t), M(Yan, Yon+1, 1), M(2, TV, 1), M(Z, Yan+1, 0t), M(y2n, Z, (2-0)t)})
and N(Yan+1, Tv, kt) < w(Max{N(Yzn, Z, t), N(Y2n, Yon+1, ), N(z, TV, 1), N(Z, Yan+1, 0t), N(y2n, Z, (2-0)1)}).
For a =1 and taking n—o, we get
M(z, Tv, kt) > ¢(Min{M(z, z, t), M(z, z, t), M(z, Tv, 1), M(z, z, t), M(z, , 1) })
> ¢(Min{l, 1, M(z, Tv, t), 1, 1})
> ¢o(M(z, Tv, 1))
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and N(z, Tv, kt) < y(Max{N(z, z, t), N(z, z, t), N(z, Tv, t), N(z, z, 1), N(z, z, 1) })
<wy(Max{0, 0, N(z, Tv, 1), 0, 0})
<y(N(z, Tv, t)).
In view of ¢ and y, we get M(z, Tv, kt) > M(z, Tv, t) and N(z, Tv, kt) < N(z, Tv, t).
By lemma (2.2), we get z = Tv. Thatis Tv =z = Bv.
Therefore, v is coincidence point of T and B.
Now, since (A, S) is weakly compatible, therefore A and S commute at coincidence point. That is ASw = SAw,
this gives Az = Sz. (3.8)
And (B, T) is weakly compatible, therefore BTv = TByv, this gives Bz = Tz. (3.9)
Now, firstly we will show thai Sz = z. Take X =z and y = Xp,+1 in (3.5), we get
M(Sz, TXon+1, kt) > O(MIN{M(AZ, BXon+1, t), M(AZ, Sz, t), M(BXan+1, TXon+1, 1), M(BXan+1, Sz, at),
M(AZ, SXon+1, (2-0)t)})
and N(Sz, TXan+1, kt) < w(Max{N(Az, BXsn1, t), N(Az, Sz, t), N(BXzn+1, TXon+1, 1), N(BXan+1, Sz, at),
N(Az, SXzns1, (2-0)t)}).
From (3.6) and (3.8), we get
M(Sz, Yan+2, kt) = ¢(MIN{M(Sz, Yon+1, 1), M(Sz, Sz, t), M(Yan+1, Yons2, 1), M(Yane1, Sz, at), M(Sz, yonsa, (2-0)1)})
and N(Sz, Yoz, kt) < w(Max{N(Sz, Yan+1, 1), N(Sz, Sz, 1), N(Yan+1, Yans2, 1), N(Yane1, Sz, at),
N(Sz, Yans2, (2-a)1)}).
For a =1 and taking n—o, we get
M(Sz, z, kt) > ¢(Min{M(Sz, z, t), 1, M(z, z, t), M(z, Sz, t), M(Sz, z, 1)})
> d(M(Sz, z, 1))
and N(Sz, z, kt) < y(Max{N(Sz, z, 1), 0, N(z, z, t), N(z, Sz, t), N(Sz, z, 1)})
<wy(N(Sz, z, 1)).
In view of ¢ and vy, we get M(Sz, z, kt) > M(Sz, z, t) and N(Sz, z, kt) < N(Sz, z, t).
By lemma (2.2), we get Sz = z. That is Sz = z = Az. (3.10)
Again we will show that Tz = z. Take X = X,y and y =z in (3.5), we get
M(Sxzn, Tz, kt) = ¢(Min{M(AXzn, Bz, t), M(AXzq, SXon, t), M(Bz, Tz, t), M(Bz, SXan, at), M(AxXz,, Sz, (2-a)t)})
and N(Sxan, Tz, kt) < y(Max{N(AXz,, Bz, t), N(AXan, SXon, t), N(Bz, Tz, t), N(Bz, Sxa,, at),
N(AXz, Sz, (2-a)t)}).
From (3.6) and (3.9), we get
M(Yon+1, TZ, kt) = ¢(Min{M(Y2n, TZ, t), M(Yan, Yon+1, £), M(Tz, TZ ,t), M(TZ, Yan41, at), M(Yan, Z, (2-a)t)})
and N(Yan+1, Tz, kt) < yw(Max{N(Yan, Tz, t), N(Yan, Yon+1, £), N(Tz, Tz ,t), N(Tz, Yons1, 0t), N(y2n, Z, (2-0)1)}).
For a = 1 and taking n—c0, we get
M(z, Tz, kt) > ¢(Min{M(z, Tz, t), M(z, z, 1), 1, M(Tz, z, t), M(z, z, t)})
> ¢(M(z, Tz, b))
and N(z, Tz, kt) < y(Max{N(z, Tz, t), N(z, z, t), 0, N(Tz, z, t), N(z, z, t)})
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<y(N(z, Tz, t)).
In view of ¢ and y, we get M(z, Tz, kt) > M(z, Tz, t) and N(z, Tz, kt) < N(z, Tz, t).
By lemma (2.2), we get z = Tz. Thatis Tz =z = Bz. (3.11)
Combining (3.10) and (3.11), we get Az=Bz=Sz=Tz=z.
Therefore, z is a common fixed pointof A, B, Sand T.
For uniqueness, let w be another fixed point of A, B, Sand T. Then we have Aw = Bw = Sw=Tw = w.
Take x =z and y = win (3.5), we get
M(Sz, Tw, kt) > ¢(Min{M(Az, Bw, t), M(Az, Sz, t), M(Bw, Tw, t), M(Bw, Sz, at), M(Az, Sw, (a-2)t)})
M(z, w, kt) > o(Min{M(z, w, t), M(z, z, t), M(w, w, t), M(w, z, at), M(z, w, (a-2)t)})
and N(Sz, Tw, kt) < y(Max{N(Az, Bw, t), N(Az, Sz, t), N(Bw, Tw, t), N(Bw, Sz, at), N(Az, Sw, (a-2)t)})
N(z, w, kt) < y(Max{N(z, w, t), N(z, z, t), N(w, w, t), N(w, z, at), N(z, w, (a-2)t)}).
For a =1, we get M(z, w, kt) > ¢(M(z, w, t)) and N(z, w, kt) < y(N(z, w, t)).
In view of ¢ and vy, we get M(z, w, kt) > M(z, w, t) and N(z, w, kt) < N(z, w, t).
By lemma (2.2), we get z = w. Hence z is unique common fixed point of A, B, Sand T.
If we take T = S in Theorem (3.1), we have the following result.
COROLLARY (3.2): Let (X, M, N, *, 0) be an intuitionistic fuzzy metric space. Let A, B and S be mappings
from X into itself satisfying:
(3.12) S(X) = B(X) and S(X) = A(X);
(3.13) if one of A(X), B(X) and S(X) is complete subset of X;
(3.14) A and S have a coincidence point;

(3.15) B and S have a coincidence point;

(3.16) there exists ke (O,f) and t> 0 such that

M(Sx, Sy, kt) > ¢(Min{M(AX, By, t), M(Ax, Sx, t), M(By, Sy, t), M(By, Sx, at), M(AX, Sy, (a-2)t)})
and N(Sx, Sy, kt) < y(Max{N(Ax, By, t), N(Ax, Sx, t), N(By, Sy, t), N(By, Sx, at), N(AXx, Sy, (a-2)t)})
forall x,ye X, ae (0,2)and ¢ € ¢, ¢ € y. If the pair (A, S) and (B, S) are weakly compatible then A, B and S
have a unique common fixed point in X.
EXAMPLE (3.1): Let X = {iﬂ n=1,2,3,...}u {0} with the usual metric and, forall t >0 and X,y € X,
define (M, N) by

: eyl

’ . t=0
M(x, y, t) = {t+|x—_‘|{| £=0 and N(x, y, t) = {t+|x—_1;|
0. t=10 1L t=0

Cleary, (X, M, N, *, 0) is a intuitionistic fuzzy metric space, where * and ¢ are defined by a * b = Min{a, b}

and a 0 b = Max{a, b} respectively. Let A, B, S and T be defined by
ix

Ix 1x 1x
AX—;,SX—?BX—i:,TX—?fOI’a”XEX.

Then, we have AX) = {-—.n =1,2,3,.. JU{0} c {_.n =1,2,3,...} U {0} = S(X)
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BO) ={o-n=1,23,.. Ju{0}c{.n=1,2,3,.. JU{0} = T(X).

1n’
Also, the condition (3.5) of theorem (3.1) is satisfied and A, B, S and T are continuous, if ¢ is increasing in each
of its coordinate and ¢(t) > t, and v is decreasing in each of its coordinates and wy(t) < t for all te [0, 1). Further,
the pairs (A, S) and (B, T) are weak compatible if

lim,_..x, =0, where {x,} is a sequence in X, such that

lim, , Ax,= lim,__S5x, = lim,_,_Bx, = lim,_,_Tx,= 0forsome0 e X.

Thus all the conditions of Theorem (3.1) are satisfied and also 0 is the unique common fixed point of A, B, S
and T.
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