

410 | P a g e

Task Scheduling Algorithm for Data Locality in Cloud

Computing

Nitin A. Dhawas
1
, Vaishali N. Dhawas

2
, Nitin W. Wankhade

3

Nutan Maharashtra Institute of Technology, Talegaon Dabhade (MS) India
1,3

Sinhgad Institute of Technology, Lonavala, (MS) India
2

ABSTRACT

Large scale data processing is increasingly common in Cloud Computing systems like Hadoop, Mapreduce etc.

In these systems, files are split into many small blocks and all blocks are replicated over several servers. To

process files efficiently, each job is divided into many tasks and each task is allocated to a server to deal with a

file block. Because network bandwidth is a scarce resource in these systems. Enhancing task data locality

(placing tasks on servers that contain their input blocks) is crucial for the job completion time. Although there

have been many approaches on improving data locality, most of them either are greedy and ignore global

optimization, or suffer from high computation complexity. To address these problems, we propose a heuristic

task scheduling algorithm in which an initial task allocation will be produced at first, and then the job

completion time can be reduced gradually by tuning the initial task allocation. By taking a global view, the

algorithm can adjust data locality dynamically according to network state and cluster workload.

Keywords—Cloud Computing, Task Scheduling, Data Locality, Hadoop, Sector

I.INTRODUCTION

Cloud computing is Internet-connected mode of supercomputing. It is a new type of shared infrastructure, which

puts the huge system pool together by the way of operators and the customer.Cloud computing is designed to

provide on demand resources or services over the Internet, usually at the scale and with the reliability level of a

data center. Clouds provide a large pool of resources, including high power computing platforms, data centers,

storages, and software services. It also provides management to these resources such that users can access them

ubiquitously and without incurring performance problems.

Balance-Reduce is a programming model designed for processing large volumes of data in parallel by dividing

the work into a set of independent tasks. It is a style of parallel programming that is supported by some

capacity-on-demand-style clouds such as Google's BigTable, Hadoop, and Sector.

In this paper, a load-balancing algorithm that follows the approach of the dynamic task allocation by balancing

the load on cluster node and then reduces the cost of performance, which increases the efficiency of the system

Fig.1 shows the detailed architecture of the complete system, platforms, software. (Ubantu Operating System,

Hadoop database and Sun Java 6 for the platforms, the Java language for programming and HTML, JSP and

411 | P a g e

XML as the scripting language are used for implementation).This cloud architecture has both a master and slave

nodes.

In this architecture a main server is maintained that gets clients requests and handles them depending on the type

of request. Search request from the client are forwarded to the node controller which takes care of the tasks for

balance and reduce processes. Once the balance-reduce function of the task is completed, the node controller

returns the output value to the server and in turn to client.

 Client1

Client2

Client3

Fig 1:-Architecture of Cloud computing

Main

server

Secondar

y server

General

software

Tenant

Specific

Obj 1

Obj 2

Hadoop

Eclips

e

Ubant

u

Centos

Memory

Blocks

Data

Bases

412 | P a g e

Fig 2. Flow Diagram of System

Fig.2 shows the flow of the system. Here we provide the multitenancy feature of SaaS, in which a single

instance of the software serves a number of tenants. So for the same set of software images, there will be

different instances generated based on the tenant id

II. RELATED WORK

Over the recent past, a considerable body of work has been done on the use of task scheduling systems for

scientific applications. Some of them have investigated scheduling technology with respect to our target

applications and scheduling management. Following are the some of the existing scheduling algorithms used in

cloud computing.

A. Data-aware scheduling on distributed systems

Over the past decade, data-intensive applications are emerged as an important part of distributed computing.

Meanwhile considerable work has been done on data-aware scheduling on distributed systems. Stork [11] is a

specialized scheduler for data placement and data movement in Grid. The main idea of Stork is to map data

close to computational resources. Though Stork can be coupled with a computational task scheduler, no attempt

is made to use data locality to reduce data transfer cost. The Gfarm [12] architecture is designed for petascale

Name node

Data

nodes

Tenants

Perform load balancing

Contains OS and

storage platform

Perform balance

and reduce

function

413 | P a g e

data-intensive computing. Their model specifically targets applications where the data primarily consist of a set

of records or objects which are analyzed independently. In Gfarm, several greedy scheduling algorithms are

implemented to improve data locality. However these algorithms do not take account of the global optimization

of all tasks. Raicu et al. [4] have implemented task diffusion on Falkon [10]. Data diffusion acquires compute

and storage resources dynamically, replicates data in response to demand, and schedules computations close to

data. Its task scheduling policy sets a threshold on the minimum processor utilization to adjust data locality and

resource utilization. However, the simple policy can not improve system performance significantly.

B. Scheduling on cloud computing systems

Scheduling on cloud computing systems has been studied extensively in early literature. The default Hadoop

scheduler schedules jobs by FIFO where jobs are scheduled sequentially. To achieve data locality, for each idle

server, the scheduler greedily searches for a data-local task in the head-of-line job and allocates it to the server

[12]. However the simple policy leads to limited data locality; meanwhile the completion time of small jobs is

increased. To enhance both fairness and data locality of jobs in a shared cluster, Zaharia et al.[2] propose delay

scheduling which improves max-min fairness, when the job that should be scheduled next according to fairness

cannot launch a data-local task, it waits for a small amount of time, letting other jobs launch task instead. As

servers are assumed to become idle quickly enough, it is worth waiting, for a local task. However, this

assumption is too strict, so delay scheduling does not work well when servers free up slowly. A close work to

delay scheduling is Quincy [5]. Quincy maps the scheduling problem to a graph data structure according to a

global cost model, and solves the problem by a well-known min-cost flow algorithm. Quincy can achieve better

fairness, but it has a negligible effect on improving data locality. Hadoop on Demand (HOD) is a management

system for provisioning virtual Hadoop clusters over a large physical cluster. It is inefficient that map tasks need

read input splits across two virtual clusters frequently. To reduce the data transferring overhead in HOD, Seo et

al. [6] designs a prefetching scheme and a preshuffling scheme. However, these methods occupy much network

bandwidth, so system performance may be decreased. To optimize the performance of multiple Map-Reduce

workflows, Sandholm et al. [7] develop a dynamic prioritization algorithm, but data locality is not enhanced in

this algorithm. To discover task straggler, Zaharia et al. [9] propose a system called LATE that makes better

estimates of tasks’ rest execution time. It is shown that LATE executes speculative tasks more efficiently than

the Hadoop’s current scheduler in heterogeneous environments where the performance of servers are

uncontrollable. To assign tasks efficiently in Hadoop, Fischer et al. [3] introduced an idealized Hadoop model

called Hadoop Task Assignment problem. Given a placement of input blocks over servers, the objective of this

problem is to find the assignment which minimized the job completion time. It is indicated that Hadoop Task

Assignment problem is NP-complete. To solve the problem, a flow-based algorithm called MaxCover-

BalAssign is provided. MaxCover-BalAssign works iteratively to produce a sequence of assignments and output

the best one. It computes in time O (m
2
n), where m is task number and n is server number. The solution has been

shown to be near optimal. However, it takes a long time to deal with a large problem instance

414 | P a g e

III. PROBLEM FORMALIZATION

Here we use the task scheduling algorithm which is used first for the balancing the load on cluster and then

reduce the performance cost. We consider scheduling a set of independent tasks on a homogeneous platform.

On one hand, as input blocks are fixed-size, we assume that data-local tasks take identical constant local cost.

On the other hand, as a larger remote task number will cause a higher network contention, remote cost is

increased when the remote task number become larger. A job is not completed until all tasks are finished. In

addition, we take account of cluster workload: at the start time, if most servers are idle, the cluster is under

loaded; in an overloaded cluster, many servers can not be idle in a short time. Base on these assumptions, our

goal is to find an allocation strategy that minimizes the job completion time. Load Balancing is used to make

sure that none of our existing resources are idle while others are being utilized. To balance load distribution, we

can migrate the load from the source nodes which have the surplus workload to the comparatively lightly loaded

destination nodes. While balancing load we take care of data, we schedule the task on the server where the data

required for that server is present.

As shown in Fig. 3, there are m (m = 7) tasks and n (n = 3) servers, where each task processes an input block on

a server. On one hand, as input blocks are fixed-size, we assume that data-local tasks take identical constant

local cost. On the other hand, as a larger remote task number will cause a higher network contention, remote

cost is increased when the remote task number become larger. A job is not completed until all tasks are finished.

In addition, we take account of cluster workload: at the start time, if most servers are idle, the cluster is under

loaded; in an overloaded cluster, many servers can not be idle in a short time. Base on these assumptions, our

goal is to find an allocation strategy that minimizes the job completion time. This problem has been shown to be

NP-complete in a restrict case (all servers are idle at the start time).

Fig 3: Task Scheduling Process

415 | P a g e

IV. BALANCE-REDUCE ALGORITHM

In this section, we introduce a data locality driven task scheduling algorithm, called Balance-Reduce. On finding

a feasible solution, a critical obstacle is that the remote cost can not be calculated before the remote task number

is known. Moreover, it is hard to obtain a near-optimal solution when the remote cost changes frequently. For

example, when we allocate a remote task, the remote task number increase by one, so the remote cost may also

increase. Furthermore, the load of the servers which have been allocated remote tasks must be updated.

In order to make sure the remote cost, algorithm is split into two phases, balance and reduces:

• Balance: Given a data placement graph G, initial load set Linit and a local cost Cloc, the balance phase returns

a total allocation B. Under B, all tasks are allocated to their preferred servers evenly.

• Reduce: Given a local cost Cloc, a remote cost function Crem(·), a total allocation B computed by the balance

phase, and an initial load set Linit, the reduce phase works iteratively to produce a sequence of total allocations

and returns the best one. By taking advantage of B, the remote cost can be computed at the beginning of each

iteration.

Algorithm 1 Balanced Allocation

Procedure BALANCE (G (T Ù S, E), Cloc, Linit)

Define: Gf is a flow network. N is the set of nodes in Gf Gr is the residual graph. T is the iteration number. Pt is

an augmenting path at iteration T. TreeT is the search tree at iteration T. Ft is the flow on Gf after iteration T. B

is a total allocation.

 Gf ← GetFlowNetwork(G)

 Gr ← GetResidualGraph(Gf)

 N ← T Ù S Ù {Nt}

 S.Num ← 0

T ← 1

While T ≤ m do

N.Visited = False

While P = null do

 S0 ← MinLoadUnvisitedServer (S, Cloc, Linit)

 ⟨Pt, TreeT⟩ ← Augment (S0, Nt, Gr)

 N.Visited =Ttrue

 Clear (TreeT)

 If P = Not Null then

S0.numS0.num + 1

 End if

End while

S0.num ← S0.num + 1

End while

416 | P a g e

Ft ← UpdateFlow (Ft −1, Pt)

Gr ← UpdateGraph (Gf, Ft)

T ← T + 1

End while

B ← FlowToAllocation(Fm)

Return B

End Procedure

Algorithm 2 Reduce Makespan

Procedure REDUCE (Cloc, Crem, B, Linit)

Define: P is a remote task pool, Lp is a local partial allocation, R and Rpre are total allocations, Mexp is an

expected makespan.

P ← ϕ

Lp ← B

Rpre ← B

While true do

Smax ← MaxLoadActiveServer(Lp)

Tl ← RandomTask (Smax, Lp)

 P ← P {Tl}

 Lp ← RemoveTask(Lp, Tl)

Mexp ← MaxLoad(Lp)

Crem ← Crem(|P|)

R ← AllocateTasks (P, Lp, Crem, Mexp, Linit)

If makespanR > Mexp then

If makespanR ≥ makespanRpre then

Return Rpre

Else

 Return R

End if

End if

Rpre ← R

End while

End Procedure

Algorithm 3 Balance-Reduce Algorithm

417 | P a g e

Combining the balance phase and the reduce phase, the pseudocode of Balance-Reduce is shown in Algorithm

3.

Procedure BALANCE-REDUCE (G,Cloc, Crem, Linit)

Define: B, R are total allocations.

B ← Balance (G, Cloc, Linit)

R ← Reduce (Cloc,Crem, B,Linit)

Return R

End Procedure

V.HARDWARE AND SOFTWARE REQUIREMENT

To deploy a minimal cloud infrastructure we will need at least two dedicated systems.

1. Front end

2. One or more nodes

For Front End

On one system we install

The Cloud Controller (clc)

The Cluster Controller (cc)

Walrus (the S3-like storage service)

The Storage Controller (Sc)

Hardware Minimum Suggested

CPU 1GHz 2*2GHz

Memory 2GB 4GB

Disk 5400 rpm IDE 7200rpm SATA

Disk 5400 rpm IDE 7200rpm SATA

Disk space 40GB 200GB

Networking 100Mbps 1000Mbps

The other system is nodes, which will run as Node Controller

Hardware Minimum Suggested

CPU VT extensions VT,64-bit, multi

core

Memory 12GB 4GB

418 | P a g e

Disk 5400 rpm IDE 7200rpm SATA or

SCSI

Disk space 40GB 100GB

Networking 100Mbps 1000Mbps

VI. PERFORMANCE EVALUATION

In this section, we present several simulations in order to investigate the effectiveness of our algorithm. For

comparison, four related task scheduling algorithms are listed as follows:

• MaxCover-BalAssign (MB) [3]. This algorithm works iteratively to produce a sequence of total allocations,

and then outputs the best one. Each iteration consists of two phase maxcover and balassign. Since the remote

cost is unknown, it calculates the virtual cost which is a prediction of the remote cost. Then it computes a total

allocation by taking advantage of the virtual cost.

• Hadoop Default Scheduler (HDS) [8]. When a server is idle, the scheduler chooses a data-local task, then

allocates

the task to the server. If there is no feasible task, then the scheduler will select a random task.

• Delay Scheduling (DS) [2]. It sets a delay threshold. If a server is idle and there is no task prefers the server,

the scheduler skips the server and increases the delay counter by one. However, if the delay counter exceeds the

delay threshold, the scheduler allocates a remote task to the server and sets the delay counter to be zero.

. Good Cache Compute (GCC) [4]. This policy is similar to DS. It sets a utility threshold which is the upper

bound of the number of idle servers. The scheduler can skip servers when the idle server number is below the

utility threshold. In our simulations, the utility threshold is set to TotalServerNumber × 90%.

We evaluate the computation time of our algorithm. Since HDS, GCC and DS are run-time scheduling

algorithms, we implement them in a compile-time scheme. Firstly, we place all servers into a min-heap;

secondly, pop a minimum load server, invoke a real-time scheduling algorithm to allocate a task, then update

load of servers. The remote cost is renewed when a remote task is allocated. We do the second step repeatedly

until all tasks are allocated. All algorithms are implemented carefully to reduce the redundant work.

The simulations will be implemented in Java and runs on a HP PC with Intel(R) Core(TM) Quad CPU Q8200

and 4GB memory. The server number is set to 2000, and the task number ranges from 100 to 12800. Fig. 4

shows that when the job scale is small, all algorithms can be finished in one second; however, when the task

number exceeds 800, the running time of MB increases significantly. We see that the running time of BAR is

slightly longer than the greedy algorithms. When the task number is 12800, the running time of BAR, HDS,

GCC, DS0.15 and DS0.25 are 9.1s, 5.5s, 5.4s, 7.1s and 7.3s, respectively, while MB takes 203 seconds. Thus,

BAR can deal with a large problem instance in a few seconds.

419 | P a g e

Fig 4. Expected Computation Time

VII. CONCLUSION AND FUTURE WORK

As large scale data-intensive applications grow in popularity, many Cloud Computing systems like MapReduce,

Hadoop and Dryad have emerged in recent years. In the general Cloud Computing architecture, network

bandwidth is a scarce resource.

To improve the system performance, a task scheduling algorithm must take into account task data locality.

However, when most of the servers can not be idle soon and network state is good, enforcing high locality has a

negative effect on job completion time.

In this paper, we present a data locality driven task scheduling algorithm called Balance-Reduce. This algorithm

schedules tasks by taking a global view and adjusts task data locality dynamically according to network state

and cluster workload.

In a poor network environment, this algorithm tries its best to enhance data locality. When cluster is overloaded,

this algorithm decreases data locality to make tasks start early. We evaluate this algorithm by comparing it to

other related algorithms. The simulation results show that this algorithm exhibit an improvement and can deal

with a large problem instance in a few seconds.

As a future work, we plan to implement this algorithm into a production cloud computing system such as

Hadoop. In a real world platform, the network state and the cluster workload change frequently, so it is

necessary to update the scheduling strategy by an efficient rescheduling algorithm. The rescheduling algorithm

is expected to handle machine failure, and network anomaly. However, as the scheduler calls rescheduling

frequently, the rescheduling algorithm should be low-complexity.

REFERENCES

[1] G. Wang and T. S. E. Ng, “The impact of virtualization on network performance of Amazon EC2 data

center,” ser. INFOCOM’10. Piscataway, NJ, USA: IEEE Press, 2010, pp. 1163–1171.

[2] M. Zaharia et al., “Delay scheduling: A simple technique for achieving locality and fairness in cluster

scheduling,” in EuroSys ’10. New York, NY, USA: ACM, 2010.

420 | P a g e

[3] M. J. Fischer et al., “Assigning tasks for efficiency in Hadoop: extended abstract,” in SPAA ’10. New

York, NY, USA: ACM, 2010, pp. 30–39.

[4] I. Raicu et al., “The quest for scalable support of data intensive workloads in distributed systems,”

ser. HPDC ’09. New York, NY, USA: ACM, 2009, pp. 207–216.

[5] M. Isard et al., “Quincy: fair scheduling for distributed computing clusters,” ser. SOSP ’09. New

York, NY, USA: ACM, 2009, pp. 261–276.

[6] S. Seo et al., “HPMR: Prefetching and pre-shuffling in shared mapreduce computation environment,”

in CLUSTER ’09. IEEE, 2009, pp. 1–8.

[7] T. Sandholm and K. Lai, “Mapreduce optimization using regulated dynamic prioritization,” in

SIGMETRICS ’09. New York, NY, USA: ACM, 2009, pp. 299–310.

[8] T. White, Hadoop: The Definitive Guide, 1st ed. O’Reilly Media, Inc., 2009.

[9] M. Zaharia et al., “Improving mapreduce performance in heterogeneous environments,” in OSDI’08.

Berkeley, CA, USA: USENIX Association, 2008, pp. 29–42.

[10] I. Raicu et al., “Falkon: a fast and light-weight task execution framework,” ser. SC ’07. New York,

NY, USA: ACM, 2007, pp. 43:1–43:12.

[11] T. Kosar and M. Livny, “Stork: Making data placement a first class citizen in the grid,” ser. ICDCS

’04. Washington, DC, USA: IEEE Computer Society, 2004, pp. 342–349.

[12] O. Tatebe et al., “Grid datafarm architecture for petascale data intensive computing,” ser. CCGRID

’02. Washington, DC, USA: IEEE Computer Society, 2002.

[13] Hadoop. [Online]. Available: http://hadoop.apache.org/

