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ABSTRACT  

Large scale data processing is increasingly common in Cloud Computing systems like Hadoop, Mapreduce etc. 

In these systems, files are split into many small blocks and all blocks are replicated over several servers. To 

process files efficiently, each job is divided into many tasks and each task is allocated to a server to deal with a 

file block. Because network bandwidth is a scarce resource in these systems. Enhancing task data locality 

(placing tasks on servers that contain their input blocks) is crucial for the job completion time. Although there 

have been many approaches on improving data locality, most of them either are greedy and ignore global 

optimization, or suffer from high computation complexity. To address these problems, we propose a heuristic 

task scheduling algorithm in which an initial task allocation will be produced at first, and then the job 

completion time can be reduced gradually by tuning the initial task allocation. By taking a global view, the 

algorithm can adjust data locality dynamically according to network state and cluster workload. 
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I.INTRODUCTION 

Cloud computing is Internet-connected mode of supercomputing. It is a new type of shared infrastructure, which 

puts the huge system pool together by the way of operators and the customer.Cloud computing is designed to 

provide on demand resources or services over the Internet, usually at the scale and with the reliability level of a 

data center. Clouds provide a large pool of resources, including high power computing platforms, data centers, 

storages, and software services. It also provides management to these resources such that users can access them 

ubiquitously and without incurring performance problems. 

Balance-Reduce is a programming model designed for processing large volumes of data in parallel by dividing 

the work into a set of independent tasks. It is a style of parallel programming that is supported by some     

capacity-on-demand-style clouds such as Google's BigTable, Hadoop, and Sector.  

In this paper, a load-balancing algorithm that follows the approach of the dynamic task allocation by balancing 

the load on cluster node and then reduces the cost of performance, which increases the efficiency of the system  

Fig.1 shows the detailed architecture of the complete system, platforms, software. (Ubantu Operating System, 

Hadoop database and Sun Java 6 for the platforms, the Java language for programming and HTML, JSP and 
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XML as the scripting language are used for implementation).This cloud architecture has both a master and slave 

nodes. 

In this architecture a main server is maintained that gets clients requests and handles them depending on the type 

of request. Search request from the client are forwarded to the node controller which takes care of the tasks for 

balance and reduce processes. Once the balance-reduce function of the task is completed, the node controller 

returns the output value to the server and in turn to client. 
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Fig 1:-Architecture of Cloud computing 
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Fig 2. Flow Diagram of System 

 

Fig.2 shows the flow of the system. Here we provide the multitenancy feature of SaaS, in which a single 

instance of the software serves a number of tenants. So for the same set of software images, there will be 

different instances generated based on the tenant id 

 

II. RELATED WORK 

Over the recent past, a considerable body of work has been done on the use of task scheduling systems for 

scientific applications. Some of them have investigated scheduling technology with respect to our target 

applications and scheduling management. Following are the some of the existing scheduling algorithms used in 

cloud computing. 

A. Data-aware scheduling on distributed systems 

Over the past decade, data-intensive applications are emerged as an important part of distributed computing. 

Meanwhile considerable work has been done on  data-aware scheduling on distributed systems. Stork [11] is a 

specialized scheduler for data placement and data movement in Grid. The main idea of Stork is to map data 

close to computational resources. Though Stork can be coupled with a computational task scheduler, no attempt 

is made to use data locality to reduce data transfer cost. The Gfarm [12] architecture is designed for petascale           
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data-intensive computing. Their model specifically targets applications where the data primarily consist of a set 

of records or objects which are analyzed independently. In Gfarm, several greedy scheduling algorithms are 

implemented to improve data locality. However these algorithms do not take account of the global optimization 

of all tasks. Raicu et al. [4] have implemented task diffusion on Falkon [10]. Data diffusion acquires compute 

and storage resources dynamically, replicates data in response to demand, and schedules computations close to 

data. Its task scheduling policy sets a threshold on the minimum processor utilization to adjust data locality and 

resource utilization. However, the simple policy can not improve system performance significantly.  

 

B. Scheduling on cloud computing systems 

Scheduling on cloud computing systems has been studied extensively in early literature. The default Hadoop 

scheduler schedules jobs by FIFO where jobs are scheduled sequentially. To achieve data locality, for each idle 

server, the scheduler greedily searches for a data-local task in the head-of-line job and allocates it to the server 

[12]. However the simple policy leads to limited data locality; meanwhile the completion time of small jobs is 

increased. To enhance both fairness and data locality of jobs in a shared cluster, Zaharia et al.[2] propose delay 

scheduling which improves max-min fairness, when the job that should be scheduled next according to fairness 

cannot launch a data-local task, it waits for a small amount of time, letting other jobs launch task instead. As 

servers are assumed to become idle quickly enough, it is worth waiting, for a local task. However, this 

assumption is too strict, so delay scheduling does not work well when servers free up slowly. A close work to 

delay scheduling is Quincy [5]. Quincy maps the scheduling problem to a graph data structure according to a 

global cost model, and solves the problem by a well-known min-cost flow algorithm. Quincy can achieve better 

fairness, but it has a negligible effect on improving data locality. Hadoop on Demand (HOD) is a management 

system for provisioning virtual Hadoop clusters over a large physical cluster. It is inefficient that map tasks need 

read input splits across two virtual clusters frequently. To reduce the data transferring overhead in HOD, Seo et 

al. [6] designs a prefetching scheme and a preshuffling scheme. However, these methods occupy much network 

bandwidth, so system performance may be decreased. To optimize the performance of multiple Map-Reduce 

workflows, Sandholm et al. [7] develop a dynamic prioritization algorithm, but data locality is not enhanced in 

this algorithm. To discover task straggler, Zaharia et al. [9] propose a system called LATE that makes better 

estimates of tasks’ rest execution time. It is shown that LATE executes speculative tasks more efficiently than 

the Hadoop’s current scheduler in heterogeneous environments where the performance of servers are 

uncontrollable. To assign tasks efficiently in Hadoop, Fischer et al. [3] introduced an idealized Hadoop model 

called Hadoop Task Assignment problem. Given a placement of input blocks over servers, the objective of this 

problem is to find the assignment which minimized the job completion time. It is indicated that Hadoop Task 

Assignment problem is NP-complete. To solve the problem, a flow-based algorithm called               MaxCover-

BalAssign is provided. MaxCover-BalAssign works iteratively to produce a sequence of assignments and output 

the best one. It computes in time O (m
2
n), where m is task number and n is server number. The solution has been 

shown to be near optimal. However, it takes a long time to deal with a large problem instance 
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III. PROBLEM FORMALIZATION 

Here we use the task scheduling algorithm which is used first for the balancing the load on cluster and then 

reduce the performance cost. We consider scheduling a set of independent tasks on a homogeneous   platform. 

On one hand, as input blocks are fixed-size, we assume that     data-local tasks take identical constant local cost. 

On the other hand, as a larger remote task number will cause a higher network contention, remote cost is 

increased when the remote task number become larger. A job is not completed until all tasks are finished. In 

addition, we take account of cluster workload: at the start time, if most servers are idle, the cluster is under 

loaded; in an overloaded cluster, many servers can not be idle in a short time. Base on these assumptions, our 

goal is to find an allocation strategy that minimizes the job completion time. Load Balancing is used to make 

sure that none of our existing resources are idle while others are being utilized. To balance load distribution, we 

can migrate the load from the source nodes which have the surplus workload to the comparatively lightly loaded 

destination nodes. While balancing load we take care of data, we schedule the task on the server where the data 

required for that server is present. 

As shown in Fig. 3, there are m (m = 7) tasks and n (n = 3) servers, where each task processes an input block on 

a server. On one hand, as input blocks are fixed-size, we assume that data-local tasks take identical constant 

local cost. On the other hand, as a larger remote task number will cause a higher network contention, remote 

cost is increased when the remote task number become larger. A job is not completed until all tasks are finished. 

In addition, we take account of cluster workload: at the start time, if most servers are idle, the cluster is under 

loaded; in an overloaded cluster, many servers can not be idle in a short time. Base on these assumptions, our 

goal is to find an allocation strategy that minimizes the job completion time. This problem has been shown to be 

NP-complete in a restrict case (all servers are idle at the start time). 

 

 

 

Fig 3: Task Scheduling Process 
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IV. BALANCE-REDUCE ALGORITHM 

In this section, we introduce a data locality driven task scheduling algorithm, called Balance-Reduce. On finding 

a feasible solution, a critical obstacle is that the remote cost can not be calculated before the remote task number 

is known. Moreover, it is hard to obtain a near-optimal solution when the remote cost changes frequently. For 

example, when we allocate a remote task, the remote task number increase by one, so the remote cost may also 

increase. Furthermore, the load of the servers which have been allocated remote tasks must be updated. 

In order to make sure the remote cost, algorithm is split into two phases, balance and reduces: 

• Balance: Given a data placement graph G, initial load set Linit and a local cost Cloc, the balance phase returns 

a total allocation B. Under B, all tasks are allocated to their preferred servers evenly. 

• Reduce: Given a local cost Cloc, a remote cost function Crem(·), a total allocation B computed by the balance 

phase, and an initial load set Linit, the reduce phase works iteratively to produce a sequence of total allocations 

and returns the best one. By taking advantage of B, the remote cost can be computed at the beginning of each 

iteration. 

Algorithm 1 Balanced Allocation 

Procedure BALANCE (G (T Ù S, E), Cloc, Linit) 

Define: Gf is a flow network. N is the set of nodes in Gf Gr is the residual graph. T is the iteration number. Pt is 

an augmenting path at iteration T. TreeT is the search tree at iteration T. Ft is the flow on Gf after iteration T. B 

is a total allocation. 

 Gf ← GetFlowNetwork(G) 

 Gr ← GetResidualGraph(Gf ) 

 N ← T Ù S Ù {Nt} 

 S.Num ← 0 

T ← 1 

While T ≤ m do 

N.Visited = False 

While P = null do 

    S0 ← MinLoadUnvisitedServer (S, Cloc, Linit) 

     ⟨Pt, TreeT⟩ ← Augment (S0, Nt, Gr) 

   N.Visited =Ttrue 

   Clear (TreeT) 

   If P = Not Null then 

S0.numS0.num + 1 

   End if 

End while 

S0.num ← S0.num + 1 

End while 
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Ft ← UpdateFlow (Ft −1, Pt) 

Gr ← UpdateGraph (Gf, Ft) 

T  ← T  + 1 

End while 

B ← FlowToAllocation(Fm) 

Return B 

End Procedure 

 

Algorithm 2 Reduce Makespan 

Procedure REDUCE (Cloc, Crem, B, Linit) 

Define: P is a remote task pool, Lp is a local partial allocation, R and Rpre are total allocations, Mexp is an 

expected makespan. 

P ← ϕ 

Lp ← B 

Rpre ← B 

While true do 

Smax ← MaxLoadActiveServer(Lp) 

Tl ← RandomTask (Smax, Lp) 

 P ← P {Tl} 

 Lp ← RemoveTask(Lp, Tl) 

Mexp ← MaxLoad(Lp) 

Crem ← Crem(|P|) 

R ← AllocateTasks (P, Lp, Crem, Mexp, Linit) 

If makespanR > Mexp then 

If makespanR ≥ makespanRpre then 

Return Rpre 

Else 

 Return R 

End if 

End if 

Rpre ← R 

End while 

End Procedure 

 

Algorithm 3  Balance-Reduce Algorithm 
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Combining the balance phase and the reduce phase, the pseudocode of Balance-Reduce is shown in Algorithm 

3. 

 

Procedure BALANCE-REDUCE (G,Cloc, Crem, Linit) 

Define: B, R are total allocations. 

B ← Balance (G, Cloc, Linit) 

R ← Reduce (Cloc,Crem, B,Linit) 

Return R 

End Procedure 

 

V.HARDWARE AND SOFTWARE REQUIREMENT 

To deploy a minimal cloud infrastructure we will need at least two dedicated systems. 

1. Front end 

2. One or more nodes 

For Front End 

On one system we install  

The Cloud Controller (clc) 

The Cluster Controller (cc) 

Walrus (the S3-like storage service) 

The Storage Controller (Sc) 

 

Hardware Minimum Suggested 

CPU 1GHz 2*2GHz 

Memory 2GB 4GB 

Disk 5400 rpm IDE 7200rpm SATA 

Disk 5400 rpm IDE 7200rpm SATA 

Disk space 40GB 200GB 

Networking 100Mbps 1000Mbps 

 

The other system is nodes, which will run as Node Controller 

 

Hardware Minimum Suggested 

CPU VT extensions VT,64-bit, multi 

core 

Memory 12GB 4GB 
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Disk 5400 rpm IDE 7200rpm SATA or 

SCSI 

Disk space 40GB 100GB 

Networking 100Mbps 1000Mbps 

 

VI. PERFORMANCE EVALUATION 

In this section, we present several simulations in order to investigate the effectiveness of our algorithm. For 

comparison, four related task scheduling algorithms are listed as follows: 

• MaxCover-BalAssign (MB) [3]. This algorithm works iteratively to produce a sequence of total allocations, 

and then outputs the best one. Each iteration consists of two phase maxcover and balassign. Since the remote 

cost is unknown, it calculates the virtual cost which is a prediction of the remote cost. Then it computes a total 

allocation by taking advantage of the virtual cost. 

• Hadoop Default Scheduler (HDS) [8]. When a server is idle, the scheduler chooses a data-local task, then 

allocates 

the task to the server. If there is no feasible task, then the scheduler will select a random task. 

• Delay Scheduling (DS) [2]. It sets a delay threshold. If a server is idle and there is no task prefers the server, 

the scheduler skips the server and increases the delay counter by one. However, if the delay counter exceeds the 

delay threshold, the scheduler allocates a remote task to the server and sets the delay counter to be zero.  

. Good Cache Compute (GCC) [4]. This policy is similar to DS. It sets a utility threshold which is the upper 

bound of the number of idle servers. The scheduler can skip servers when the idle server number is below the 

utility threshold. In our simulations, the utility threshold is set to TotalServerNumber × 90%. 

 

We evaluate the computation time of our algorithm. Since HDS, GCC and DS are run-time scheduling 

algorithms, we implement them in a compile-time scheme. Firstly, we place all servers into a min-heap; 

secondly, pop a minimum load server, invoke a real-time scheduling algorithm to allocate a task, then update 

load of servers. The remote cost is renewed when a remote task is allocated. We do the second step repeatedly 

until all tasks are allocated. All algorithms are implemented carefully to reduce the redundant work. 

The simulations will be implemented in Java and runs on a HP PC with Intel(R) Core(TM) Quad CPU Q8200 

and 4GB memory. The server number is set to 2000, and the task number ranges from 100 to 12800. Fig. 4 

shows that when the job scale is small, all algorithms can be finished in one second; however, when the task 

number exceeds 800, the running time of MB increases significantly. We see that the running time of BAR is 

slightly longer than the greedy algorithms. When the task number is 12800, the running time of BAR, HDS, 

GCC, DS0.15 and DS0.25 are 9.1s, 5.5s, 5.4s, 7.1s and 7.3s, respectively, while MB takes 203 seconds. Thus, 

BAR can deal with a large problem instance in a few seconds. 
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Fig 4. Expected Computation Time 

 

VII. CONCLUSION AND FUTURE WORK 

As large scale data-intensive applications grow in popularity, many Cloud Computing systems like MapReduce, 

Hadoop and Dryad have emerged in recent years. In the general Cloud Computing architecture, network 

bandwidth is a scarce resource. 

To improve the system performance, a task scheduling algorithm must take into account task data locality. 

However, when most of the servers can not be idle soon and network state is good, enforcing high locality has a 

negative effect on job completion time. 

In this paper, we present a data locality driven task scheduling algorithm called Balance-Reduce. This algorithm 

schedules tasks by taking a global view and adjusts task data locality dynamically according to network state 

and cluster workload. 

In a poor network environment, this algorithm tries its best to enhance data locality. When cluster is overloaded, 

this algorithm decreases data locality to make tasks start early. We evaluate this algorithm by comparing it to 

other related algorithms. The simulation results show that this algorithm exhibit an improvement and can deal 

with a large problem instance in a few seconds. 

As a future work, we plan to implement this algorithm into a production cloud computing system such as 

Hadoop. In a real world platform, the network state and the cluster workload change frequently, so it is 

necessary to update the scheduling strategy by an efficient rescheduling algorithm. The rescheduling algorithm 

is expected to handle machine failure, and network anomaly. However, as the scheduler calls rescheduling 

frequently, the rescheduling algorithm should be low-complexity. 
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