SYNTHESIS AND CHARACTERISATION OF SILVER NANOPARTICLES USING SEED EXTRACT OF *TRICHOSANTHES CUCUMERINA* (SNAKE GOURD) AND ITS ANTIBACTERIAL AND PHOTOCATALYTIC ACTIVITY

Akshaya Kruthika J S, Shiny John Vairamon

*1,1*Department of Chemistry, Stella Maris College (Autonomous), Chennai -600086, India

ABSTRACT

This study involves green synthesis of silver nanoparticles using 10mM AgNO\(_3\) solution and the seed extract of *Trichosanthescucumerina*(Snake gourd) as the reducing agent. The synthesis and characterisation were confirmed by UV-Vis spectroscopy, Fourier Transform Infra-Red spectroscopy (FTIR), Particle size analysis, SEM and X-ray Diffraction (XRD). This disc diffusion method was used to confirm the antibacterial activity. The aqueous medium containing silver nanoparticles synthesised using *Trichosanthescucumerina* seed extract showed a peak at 450nm; FTIR analysis confirmed the role of reducing and capping agent. XRD analysis confirmed the crystallite size around 18nm for the silver nanoparticles using the seed extract of the snake gourd (SESG). Photocatalytic activity of the synthesised AgNP was studied using Congo red dye. It was found that the synthesised AgNP is a photocatalyst. The silver nanoparticles have shown antibacterial activity against gram positive bacteria *Staphylococcus aureus* and gram negative bacteria *Escherichiacoli*.

Keywords: Antibacterial activity, Photocatalytic activity, Silver Nanoparticle, *Trichosanthescucumerina*.

I. INTRODUCTION

The field of nanotechnology is one of the most active areas in modern materials science. Nanoparticles exhibit completely new or improved properties based on the specific characteristics such as size, distribution and morphology [1]. Silver nanoparticles have found tremendous applications in the field of high sensitivity biomolecular detection and diagnostics, antimicrobials and therapeutics. The silver metal has a great toxicity against wide range of microorganisms. Silver nanoparticles are found to be effective as anti-inflammatory, anti-angiogenesis, antiviral, anti-platelet activity and against cancer cells [2]. Green synthesis of AgNP (Silver Nanoparticle) using plant extracts containing phytochemical agents has attracted considerable interest [3]. The formation of silver nanoparticles via green synthesis is also studied by using *Phyllanthusamarus*,

195 | P a g e
Alternantera sessilis, Azardica inidca, Catharanthus roseus[4].

The present study focuses on *Trichosanthes cucumerina* (Snake gourd) it belongs to the family Cucurbitaceae. It is useful to maintain healthy heart and liver. It also counteracts respiratory problems, acidity, cancer and worms.

It provides relief from arthritis, promotes hair growth, boost immunity and promotes weight loss. *Trichosanthes cucumerina*, the fruit of which is mainly consumed as vegetable as it has nutritional value. The dried seeds are used for its anthelmintic and anti-diarrheal properties. Seeds have antibacterial, anti-spasmodic and insecticidal properties[5]. Therefore number of chemical, physical and biological approaches are available for the synthesis of silver nanoparticles. Biosynthesis is considered better than chemical and physical synthesis because the use of expensive and toxic chemicals is eliminated and it is a clean, eco-friendly method.

The present study focuses on the green synthesis of AgNPs using a cost effective, commonly and abundantly available vegetables *Trichosanthes cucumerina* (Snake gourd). The study aims to characterise the synthesised silver nanoparticles using UV-VIS, FT-IR, Particle Size Analysis, SEM and XRD. This study also focuses on the photocatalytic activity and antibacterial study of the synthesised silver nanoparticles against gram positive bacteria *Staphylococcus aureus* and gram negative bacteria *Escherichia coli*.

II. EXPERIMENTAL

Silver nitrate was obtained from Thermo Fischer Scientific, India Pvt. Ltd., Mumbai. Seeds and vegetable of Snake gourd weighing 25g each were used to make aqueous extract. 10mM of 90mL silver nitrate solution was prepared. The silver nanoparticles (AgNP) was synthesized using 10 mL of Snake gourd vegetable extract and seed extract (AgNP- SESG) respectively for reduction of silver nitrate into elemental silver. The primary detection of synthesised silver nanoparticles was carried out in the reaction mixture by observing the colour change from colourless to dark brown[1].

1.1 CHARACTERISATION TECHNIQUES

2.1.1 UV-Visible spectroscopic analysis

The bioreduction of 10mM silver nitrate to silver nanoparticles using SESG was analysed after a time interval of 5 hours for the absorbance by the UV-Vis against double distilled water as blank. UV-Visible spectral analysis was done by using JASCO V-750 UV-VIS Spectrometer[4].

1.1.2 FTIR analysis

To remove any free biomass residue or capping ligand of the nanoparticles, the residual solution of 100mL after the reaction was centrifuged at 10,000 rpm for 10 minutes. The resulting suspension was dispersed in 10 mL sterile distilled water. The centrifuging and dispersion was repeated three times. The purified suspensions was dried in a vacuum desiccator. The FTIR Analyser (BRUKER ALPHA-T) was used to analyse the dried silver nanoparticles. [4]

1.1.3 Particle size analysis

This technique was used to study the size distribution of nanoparticles. The particle size of the residual solutions were studied using 2 mL of each of the solution fed into the Particle size analyser (MALVERN MODEL).
1.1.4 SEM analysis

The morphological characterisation of the samples were done using SEM-JOEL MODEL (JSM-6390 LV). The extract of reduced silver nanoparticle was dried and drop coated onto carbon tape and performed on SEM(JOEL MODEL JSM 6390LV). In this analysis an electron beam is focused into affine probe and subsequently scanned over a small rectangular area. As the beam interacted with the sample it created various signals also that were detected [4]. After the reduction process, the silver nanoparticles were separated by centrifuging the solution at 10,000 rpm for 15 mins. Silver nanoparticles were purified by repeated centrifuging for three times. It was dried in a vacuum desiccator. The dried powder was used to identify the shape and morphology of the nanoparticles.

1.1.5 XRD analysis

The silver nanoparticles were purified by repeated centrifugation of above synthesized brown suspension at 10,000 rpm for 10 minutes followed by drying in a vacuum desiccator. The dried nanoparticles were analysed by using BRUKER D8 advanced powder X-ray diffractometer operation at a voltage of 40Kv and the intensity of the diffracted X-rays measured as a function of the diffraction angle 2θ. The crystalline domain size was calculated from the width of the XRD peaks, using Scherrer formula:

$$D = \frac{0.9\lambda}{\beta \cos \theta}$$ (1)

Where D is the average crystalline domain size perpendicular to the reflecting plane, λ is the X-ray wavelength, β is the full width half maximum (FWHM) and θ is the diffraction angle [6].

2.2 APPLICATION 2.2.1 Antibacterial study

Antibacterial activity of the sample was determined by disc diffusion method on Muller Hinton agar (MHA) medium. Muller Hinton agar (MHA) medium was poured into the petriplate. After the medium was solidified, the inoculum was spread onto the solid plates with sterile swab moistened with the bacterial suspension. The disc were placed in MHA plates and added 20µL of the sample (Concentration: 1000µg, 750µg, 500µg) and 20µl of the standard (S) ampicillin (1mg/mL) onto the disc. The plates were incubated at 37°C for 24 hrs. The antimicrobial activity was determined by measuring the diameter of zone of inhibition[7].

2.2.2 Preliminary study on photocatalytic activity in sunlight

The photocatalytic activities of the materials were studied by examining the decolourisation reaction of Congo red (CR) in sunlight. The synthesized AgNP from SESG was dispersed in 10mL of 10ppm CR dye. The photosynthesized AgNP was dispersed in 10mL of 10ppm CR dye. The photo decolourisation studies of these solutions were analysed by placing it in sunlight for one hour, samples were withdrawn at various time intervals, centrifuged and quantitative determination of CR was performed by measuring its absorption using UV-Visible spectrophotometer (MODEL 2373).
2.2.2.1 Study on photocatalytic activity using Photoreactor

The photolysis of CR was carried out in the UV photoreactor. 100 mL capacity Quartz tubes were used as reaction cell, the reaction solution was illuminated by a 8 W mercury vapour lamp emitting 365 nm wavelength. Aerator along with the connecting tubes, were introduced into reaction system for effective mixing of the samples.

The aqueous solution of 10 ppm CR over 10 mg AgNP obtained using SESG were analysed in the dark for 30 minutes to ensure the adsorption equilibrium. The concentration of the dye in the reaction system was monitored spectrophotometrically by measuring the adsorption intensity at the wavelength range of 400-800 nm with a calibration curve. Samples of about 3 ml were withdrawn at specific time intervals of dark reaction and of illumination and the absorbance of resulting solution were measured. The following parameters were analysed [8].

a) Percentage Adsorption

% Adsorption were calculated using the formula:
\[
\frac{(C_{\text{blank}} - C_{\text{dark}})}{C_{\text{blank}}} \times 100 \tag{2}
\]

\(C_{\text{blank}}\) = initial concentration

\(C_{\text{dark}}\) = concentration after adsorption equilibrium

b) Percentage Decolourization

% Decolourisation were calculated using the formula:
\[
\frac{(C_0 - C_t)}{C_0} \times 100 \tag{3}
\]

Where, \(C_0\) = initial concentration

\(C_t\) = final concentration at time ‘t’

III. RESULTS AND DISCUSSION

1.2 UV-Visible spectroscopic analysis

UV-Visible spectral analysis was done by using JASCO V-750 UV-VIS Spectrometer. The bio reduction of Ag\(^+\) ions on the solution was monitored. The synthesised silver nanoparticles using the seed extract of snake gourd had an absorption band at \(\lambda_{\text{max}}\) 450 nm (Fig. 1), broadening of the peak indicated the particles were polydispersed [4].
Hence standardisation has to be done for vegetable of Snake Gourd as it did not show evidence for formation of AgNP in this concentration. The present study thus focuses on green biosynthesis of AgNP using only the seed extract of snake gourd.

The band gap of SESG can be calculated using Plank’s formula:

\[E = \frac{hc}{\lambda_{\text{max}}} \]

Where, \(E \) is the energy band gap, ‘\(h \)’ is plank’s constant (6.626 X 10^{-34} \text{ Js}), ‘c’ is the velocity of light (3 X10^8 \text{ m/s}) and1\text{J} = 6.242 \times 10^{18} \text{eV}. The energy band gap for the SGS from the solid UV-Vis spectrum was found to be 2.75 eV.

The UV-Vis spectra of the AgNP of the vegetable extract of the Snake Gourd is shown in Fig.2. The synthesised silver nanoparticle using the vegetable extract of snake gourd showed no characteristic absorption band which might be due to the absence of reducing agent in the vegetable.
1.3 FTIR Spectroscopic analysis

Silver nanoparticles synthesised from the seeds of snake gourd shows strong absorption bands at 3332, 2916, 1645, 1025 cm\(^{-1}\) (Fig. 3). The absorption peak at 3332 cm\(^{-1}\) is assigned to O-H stretch of alcohols and phenolic compounds. The absorption band at 1645 cm\(^{-1}\) may be due to amide bonds of proteins arising from carbonyl stretching in proteins and 1025 cm\(^{-1}\) can be assigned to the C-N stretching vibrations [4]. These FT-IR spectrum values showed the bonding of silver nanoparticles with some groups in the compound from the vegetable extract. These compounds may cap the silver nanoparticles and form a layer on the surface on them which could result in the stabilising of NPs in aqueous medium. The FTIR spectrum confirmed the presence of amine and proteins being strongly attached to the metal particles, and the role of proteins is to prevent agglomeration and thereby stabilise the nanoparticles. These indicate the function of biological compounds has performed a dual function of formation and stabilisation of metal nanoparticles in an aqueous medium [9][10].

1.4 Particle size analysis
Fig 4: Particle size analyser spectrum of AgNP-SESG

The particle size of AgNP ranged between 5nm-1010nm with the mean size of 204.2nm by using seed extract of snake gourd (Fig.4). The average size is higher than XRD and this can be due to agglomeration on long standing in the liquid phase.

1.5 SEManalysis

Fig 5: SEM morphology of AgNP-SESG

The SEM pictures shows relatively spherical shaped nanoparticles formed with the diameters that ranged between 25.1 nm to 73.0 nm for AgNP synthesised using seed extract of snake gourd (Fig.5).

3.5 XRDAnalysis

Fig 6: XRD spectra of AgNP-SESG

Three distinct diffraction peaks at 38.16°, 44.29° and 64.51° were obtained for the AgNPs synthesised from seed
extract of snake gourd (Fig. 6). These were indexed with the planes (111), (200) and (220) for the face centered cubic silver asper the JCPD card No: 40-0783. The crystallite size calculated from XRD analysis were found to be 16.98 nm, 15.77 nm and 19.94 nm for the synthesised AgNP using seed extract of snake gourd.

3.6 ANTIBACTERIAL STUDIES

![Image](image.png)

Fig 7: Antibacterial activity of the synthesised SESG silver nanoparticles at three different concentration (500 µg/ml, 750 µg/ml, 1000 µg/ml) against a) *S. aureus* b) *E. coli*

[S- Ampicillin (20 µl/disc); 1) 500 µg/ml of SGS; 2) 750 µg/ml of SGS; 3) 1000 µg/ml of SGS]

The maximum zone of inhibition was formed against gram-positive bacteria *Staphylococcus aureus* when loaded with 1000 µg of silver nanoparticle synthesised using seed extract of snake gourd (Fig. 7). The small size of AgNP provides better contact and interaction with bacterial cell. The action of AgNP on the bacteria may be due to its attachment on the surface of the bacterial cell membrane by interacting with thiol group found in the respiratory enzymes of bacterial cells. This may inhibit the respiratory process in bacteria resulting in the bacterial cell death. AgNP may also prevent DNA from replication and the cells from reproduction [7]. Thus the synthesised AgNP using SESG shows antibacterial activity.

3.7 PHOTOCATALYTIC ACTIVITY

Photodecolourisation of Congo red over 10 mg of AgNP-SESG was studied with 10 ppm concentration of the dye. The preliminary study of the photodecolourisation of the dye by AgNP-SESG in presence of sunlight showed a decrease in the intensity of absorption at λmax 497 nm with time. Hence further preliminary study on the photocatalytic activity of AgNP-SESG was carried out using UV photoreactor.
The aqueous solution of 10ppm CR over 10mg AgNP-SESG also showed a decrease in the absorption intensity from 2.11 to 1.64 at λmax 497 nm using a UV photoreactor when monitored over the wavelength range of 400-800 nm and time period from 0 min to 120 mins (Fig.8). The % decolourisation of CR at 120 mins was found to 22.3 % (Fig.9). Thus, the present study shows new finding that the synthesised silver nanoparticle using the seed extract of snake gourd exhibits photocatalytic activity as it decolourised the Congo red dye.

IV. CONCLUSION

The present study helped to develop a fast, eco-friendly, and convenient green method for the synthesis of silver nanoparticles from silver nitrate using seed extract of snake gourd (AgNP-SESG) at ambient temperature. Colour changes occurred due to the Surface Plasmon Resonance because of the reduction of Ag⁺ ions to Ag⁰ by the biomolecules present in the extract resulting in the formation of silver nanoparticles. The green synthesis of the silver nanoparticles was confirmed by UV-Vis, FT-IR, Particle size analysis, XRD analysis and SEM. UV-Vis
spectra confirmed the presence of elemental silver nanoparticles shown by \(\lambda_{\text{max}} \) at 450 nm. FTIR showed characteristic absorption peaks at 3332, 2916, 1645, 1025 cm\(^{-1}\). FT-IR spectroscopic study indicated the carbonyl group of amino acid residues in seed extract had strong ability to bind with silver and serving as capping and tabilizingagentintheformationofsilvernanoparticles. The particle size analysis, SEM and XRD confirmed the formation of silver nanoparticles. The particle size analysis showed the average mean size of 204.2 nm for silver nanoparticle using seed extract of snake gourd due to agglomeration. The crystallites size from XRD analysis were found to be 16.98 nm, 15.77 nm, 19.94 nm and the face centered cubic structure was confirmed. The SEM analysis showed the morphology of the silver nanoparticles to be spherical and the size ranging from 23.1 nm to 73.0 nm. The antibacterial activity of silver nanoparticles by green synthesis was evaluated against gram positive bacteria *Staphylococcus aureus* and gram negative bacteria *Escherichia coli*. It was found that AgNP exhibited greater antibacterial activity against gram positive *Staphylococcus aureus* at the concentration 1000 \(\mu \text{g} \) with 12 mm zone of inhibition. Photocatalytic activity of the as synthesised AgNP-SESG was studied using Congo red dye. It was found that AgNP-SESG acts as a photocatalyst and can be further used for treatment of waste water from industries. Thus, the silver nanoparticles obtained by the green synthesis from seed extract of snake gourd (SESG) had exhibited both bactericidal activity and photocatalytic activity which could be used for further research to study therapeutic and environmental applications.

V. ACKNOWLEDGEMENT

We thank Dr. Sr. Jasintha Quadras, The Principal; The Department of Chemistry & CRIST, Stella Maris College (Autonomous), Chennai for all the support and facilities provided. We extend our thanks to LifeTech Research Centre, Chennai; NIT, Calicut; St. Joseph College, Trichy and SAIF, IIT Madras for the support in characterisation studies.

REFERENCES,

