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ABSTRACT  

The main objective of our research problem is to study the Bayes estimation of the unknown parameter of a 

three parameter Weibull Pareto distribution (WPD). The prior distribution used here is the non-informative 

Jeffery
’
s prior; Extension of Jeffery’s prior and quasi prior. Bayes estimators are derived under squared error 

loss function, Entropy loss function and Precautionary loss function which is asymmetric in nature. Mean 

square error simulations are performed to compare the performances of these Bayes estimates under different 

situations. Finally, we summarize the result and give the conclusion of this study. 

Keywords: Baye’s estimation, Loss functions, Maximum Likelihood Estimator, Priors, Weibull 

Pareto distribution. 

 

I. INTRODUCTION 

A new three-parameter distribution, called the Weibull Pareto distribution (WP) has been introduced recently by 

Suleman Nasiru (2015). The three parameters WP has the following density function 
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and the cumulative distribution function cdf of the WP distribution is  
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For  1 and , it represents the  one parameter  exponential distribution , for 1 and , it represents  

the one parameter  inverted exponential distribution , for 1 and , it represents the one parameter Weibull 

distribution , for 1 , it represents the two parameter inverted Weibull distribution , for 1 , it represents 

the two parameter Weibull distribution  and for 1 , it represents the two parameter inverted exponential 

distribution. 

The Weibull distribution is one of the most widely used distributions for analyzing lifetime data. It is found to 

be useful in diverse fields ranging from engineering to medical sciences (see Lawless (2002), Martz and Waller 

(1982)). The Weibull family is a generalization of the exponential family and can model data exhibiting 

monotone hazard rate behavior, i.e. it can accommodate three types of failure rates, namely increasing, 

decreasing and constant. The Pareto distribution was introduced (Pareto, 1896) as a model for the distribution of 

income. In addition to economics, its models in several different forms are now being used in a wide range of 
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fields such as insurance, business, engineering, survival analysis, reliability and life testing. Alzaatreh et al. 

(2013) developed the Weibull-Pareto distribution while Bourguignon et al. (2014), introduced the Weibull-G 

family of distributions. Ahmad and Kaisar (2013) considered the estimation of the scale parameter of two 

parameter Weibull distribution with known shape. They obtained Baye’s estimator of Weibull distribution by 

using Jeffrey’s and extension of Jeffrey’s prior under linear exponential loss function and symmetric loss 

functions.  Afaq et al. (2014) considered the estimation of the parameters of Lomax distribution using Jeffery’s 

and extension of Jeffery’s prior under different loss functions. They also compared the classical method with 

Bayesian method by using mean square error through simulation study with varying sample sizes. Dow, James, 

(2015) studied the Bayesian Inference of the Weibull-Pareto distribution. 

The aim of this paper is to propose the different methods of estimation of the parameters of the WPD. In the 

next section, we obtain the MLE of the unknown parameter , in WPD when the parameters  and  are 

known. We also discuss the procedures to obtain the Bayes estimators for the unknown parameters using 

Jeffery’s prior, extension of Jeffery’s and Quasi prior under entropy loss, square error and precautionary loss 

function. 

 

II. ESTIMATION OF THE UNKNOWN PARAMETER δ WHEN β AND  ARE KNOWN 

Let us consider a random sample ),...,,( 21 nxxxx   of size n from the Weibul Pareto   distribution (WPD). 

Then the likelihood function for the given sample observation is 
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The log-likelihood function is 
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As parameters  and  are assumed to be known, the ML estimator of unknown parameter   is obtained by 

solving the 
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III. BAYESIAN ESTIMATION 

The foundation of Bayesian statistics is Bayes theorem. Bayes theorem states that posterior density is 

proportional to the product of prior and likelihood function i.e.,             

)(),,;()|(  gxLxg  .  

In the Bayesian terminology, )(g is a prior density of , which tells us what is known about   without 

knowledge of data. The density ),,;( xL is likelihood function of  , which represents the contribution of 
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x  (data) to knowledge about   (e.g., Berger, 1985 and Zellener, 1971). Finally, )|( xg   is the posterior 

density, which tells us what is known about   given knowledge of data x
 
.Posterior estimates of   can also 

be obtained from the posterior density .)|( xg  In this paper we now derive the Baye’s estimator of the 

unknown parameter  in WPD when the parameters,  and  are known. In this paper, we consider three 

different priors and three different loss functions. 

(1) Jeffery’s prior: Jeffery’s (1946) proposed a formal rule for obtaining a non-informative prior as 




1
)(1 g . 

(2) Extension of Jeffery’s Prior: The extended Jeffrey’s prior proposed by Al-Kutubi (2005), is given as: 
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(3) Quasi Prior: when there is no information about the parameter , one may use the quasi density as given 

by: 
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The quasi prior leads to diffuse prior when d=0 and to a non informative prior for a case when d=1. 

3.1 Baye’s Estimator under )(1 g   

Under )(1 g , using (2.1), the posterior distribution of   is given by 
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where K is independent of  and 
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Hence the posterior distribution function of   is given as 
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3.1.1 Estimation under SELF
 

By using squared error loss function
2)ˆ(),ˆ(   cl , for some constant c the risk function is given by 



  

1487 | P a g e  
 









0

12)ˆ()ˆ(   de
n

T
cR Tn

n

















  

 







0 0

1112

0

12 ˆ2ˆ
)(

)ˆ(   dedede
n

Tc
R nTnTnT

n

 

T

cn

T

cnn
cR




ˆ2)1(ˆ)ˆ(
2

2 


 .

 

 

Now solving 0)ˆ(
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3.1.2 Estimation under Entropy Loss Function 

By using entropy loss function  1)log()(   bL for some constant b the risk function is given by   
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Now solving   0ˆ
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3.1.3 Estimation under precautionary loss function 

By using precautionary loss function
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3.2 Baye’s Estimator under )(2 g  

Under )(2 g , using (2.1), the posterior distribution of   is given 
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3.2.1 Estimation under SELF
 

By using squared error loss function
2)ˆ(),ˆ(   cl , the Risk function is given by 
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Remark 1.1: Replacing 2/11c

 

 in (3.6) we get the same Bayes estimators as obtained in (3.2) corresponding 

to the Jeffrey’s prior and replace 2/31c  we get the Hartigan
,
 s prior. 
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3.2.2 Estimation under Entropy Loss Function 

By using entropy loss function  1)log()(   bL for some constant b the risk function is given by 
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Remark 1.2: replacing 2/11c

 

 in (3.7) we get the same Bayes estimators as obtained in (3.3) corresponding 
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Remark 1.3: Replacing 2/11c

 

 in (3.8) we get the same Bayes estimators as obtained in (3.4) corresponding 

to the Jeffrey’s prior and replace 2/31c  we get the Hartigan
,
 s prior. 

3.3 Baye’s Estimator under )(3 g
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3.3.1 Estimation under SELF
 

By using squared error loss function
2)ˆ(),ˆ(   cl , the Risk function is given by 
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3.3.2 Estimation under Entropy Loss Function 

By using entropy loss function  1)log()(   bL for some constant b the risk function is given by   
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Now solving   0ˆ
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3.3.3 Estimation under precautionary loss function

 

 By using precautionary loss function
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IV. SIMULATION STUDY 

In our simulation study, we choose a sample size of n=25, 50 and 100 to represent small, medium and large data 

set. The parameter δ is estimated for Weibull Pareto distribution by using the Bayesian method of estimation 

under Jeffrey’s, extension of Jeffrey’s prior and Quasi prior by using different loss functions. For the parameter 

δ we have considered δ = 0.5, 1.0 and 1.5. The parameters  and β has been fixed at  =0.5 and β =1.5. The 

value of Jeffrey’s extension were c1= 0.4 and the hyper parameter d=0.3. This was iterated 10000 times and the 

shape parameter for each method was calculated. A simulation study was conducted R-software to examine and 

compare the performance of the estimates for different sample sizes with different values of loss functions. The 

results are presented in tables for different selections of the parameters. It is clear from Table 1-3, the 

comparison of mean square error under different loss functions using non-informative priors has been made 

through which we conclude that within each prior entropy loss function provides less mean square error so it is 
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more suitable for the Weibull Pareto distribution and amongst priors Jeffrey prior is more preferable as 

compared to other priors which are provided here because under this prior mean square error is small. 

 

   Table 1: MSE for ̂  under Jeffery prior using different loss functions 

 

Table 2: MSE for ̂  under Extension of Jeffery’s prior using different loss functions 

 

 

 

 

n  
 

   ML̂  SL̂  EL̂
 PL̂  

25 0.5 1.5 

0.5 0.036934 0.036934 0.029019 0.041373 

1.0 0.277250 0.277250 0.224239 0.306084 

1.5 0.142988 0.142988 0.167373 0.132884 

50 0.5 1.5 

0.5 0.008022 0.008022 0.009132 0.0075285 

1.0 0.016252 0.016252 0.016074 0.016648 

1.5 0.046349 0.046349 0.044440 0.048012 

100 0.5 1.5 

0.5 0.005770 0.005770 0.006238 0.005552 

1.0 0.010151 0.010151 0.009824 0.010392 

1.5 0.033991 0.033991 0.036217 0.033033 

n    
   

C1 ML̂  SL̂  EL̂
 PL̂  

25 0.5 1.5 

0.5 0.4 0.037018 0.0387706 0.0305741 0.043349 

1.0 0.4 0.277641 0.289083 0.234673 0.318610 

1.5 0.4 0.143777 0.139538 0.162859 0.129960 

50 0.5 1.5 

0.5 0.4 0.0080410 0.007837 0.008916 0.007359 

1.0 0.4 0.016316 0.016451 0.016108 0.016928 

1.5 0.4 0.046526 0.047137 0.044846 0.048990 

100 0.5 1.5 

0.5 0.4 0.005777 0.005688 0.006148 0.005474 

1.0 0.4 0.010170 0.010261 0.009892 0.010522 

1.5 0.4 0.034049 0.0336531 0.035797 0.032736 
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Table 3: MSE for ̂  under Quasi prior using different loss functions 

From these tables we conclude that Entropy loss is best among these priors as it gives the smallest values of 

estimates in most cases 

 

V. CONCLUSION 

In this paper, we have addressed the problem of Bayesian estimation for the Weibull Pareto distribution, under 

three different loss functions and that of Maximum Likelihood Estimation. From the results, we observe that in 

most cases, Bayesian Estimator under entropy Loss function has the smallest Mean Squared Error values under 

Jeffrey’s prior and its extension prior as well as the Quasi prior. Further as we increase sample size mean square 

error comes down. 
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