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ABSTRACT  
 

Spatial variability and its importance were kept in view and this research was designed to compare the accuracy of 

different experimental variograms models (exponential, spherical, Gaussian and linear models) based on cross-

validation procedure (MSE, ASE, RMSE, RMSSE) for interpolating soil physical properties (bulk density and 

particle density) at research farm of SKUAST-K, Shalimar, Srinagar. The model with the smallest residual sum of 

squares (RSS) was further interrogated to find the number of neighbors that returned the best cross-validation result. 

Soil sampling was done on a grid system using Global Positioning System (GPS). On this research field, soil bulk 

density was best fitted to spherical model with a range of 112.53 m. There was no preferential model for soil particle 

density and all the models tested have same precision. Both bulk density and particle density were moderately 

spatially dependent. It was concluded from the present study that the moderate spatial dependency along with small 

range of soil physical properties would be the result of soil disturbances caused by recent cut and fill for lazer 

levelling. 
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I. INTRODUCTION  

 

Spatial variability of soil physical properties within or among agricultural fields is inherent in nature due to geologic 

and pedologic soil forming factors, but tillage and other management practices may induce some of the variability. 

Consequently, the physical properties of the soil are also affected by many factors that change laterally across fields, 

vertically with depth, and temporally in response to climate and human activity [1]. Since this variability affects 

plant growth, nutrient dynamics, and other soil processes, knowledge of the spatial variability of soil physical 

properties is therefore necessary. 

Many studies have focused on studying variability at large and medium scales [2]. For instance, studies on soil 

texture by Warrick and Gardner (1983) [3] and Tanji (1996) [4] found that soil texture variability has a significant 

influence on the moisture, availability of nutrient and yield potential of any soil of any site. Similarly, Zhang et al 
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(2010) [5] assessed variability of surface soil moisture in Karst regions using a 20m interval grid sampling technique 

and found that variability was explained by the exponential and Gaussian models with a weak to moderate spatial 

dependence and a mosaic pattern exhibited in the kriged maps. Soil moisture is also known to exhibit moderate 

variability spatially at a field scale [6, 7]. These studies are in tandem with the farming systems in the developed 

world.  

Although the level of spatial soil variability is scale dependent, assessing spatial soil variability is vital before 

conducting site specific crop and soil management practices [8]. Typically, spatial variability of soil depends on the 

specific soil studied but, such information for soil of Kashmir Himalayas is lacking and hence, need to be assessed.  

So, the objective of this study was therefore to assess the spatial variability of soil physical properties in a research 

farm of SKUAST-K, Shalimar cropped to cereals, vegetables and horticultural crops. 

 

II  MATERIALS AND METHODS 

Study Area 

The present investigation was carried out in a research farm of SKUAST-K, Shalimar (34º 8'42" and 34º 9'3" N 

latitudes and 74º 39' 5" and 74º 53'5.6"E longitude), Srinagar (Fig. 1). It has 1615 m average altitude above sea 

surface and covers an area of 23.8 ha. The climate is temperate and characterized by mild summers and chilling 

winters having normal annual maximum temperature of 19.5°C and minimum of 6.8°C with normal annual rainfall 

of 786.2 mm.  

Soil Sampling 

Soil samples were collected from research farm of SKUAST-K, Shalimar in the spring, 2013. A total of seventy 

seven (Table 1; Fig. 1) samples were selected in a systematic grid design using Arc.GIS (10.2). Each grid was 

specified at a fixed distance of 50 × 50 m
2
 grid from 0-22.5 cm depth. The cylinders of 12.5cm height were used for 

soil samples collection and the collected samples were taken to the laboratory where they were weighed (fresh 

weight of sample; FWS) then oven dried at 105
o
C for 72 hrs. The weight was taken after oven drying (dry weight of 

soil; DWS). The samples were analyzed for bulk density and particle density. Particle density was determined by 

pycnometer method [9]. Bulk density of soil was determined by core sampler method as described by Black (1965) 

[10].  

III   STATISTICAL ANALYSIS 

Descriptive statistics of collected data  

The data were first tested for frequency distribution and then their normality was analyzed. Using SPSS (2011) [11], 

data were analyzed for the statistical parameters, viz. mean, median, standard deviation, coefficient of variation, 

skewness and kurtosis. The coefficient of variation (CV) was mainly used to assess the variability of the different 

data sets.  
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Geostatistical analysis 

The Krigging interpolation and semivariogram analysis were performed using Arc.GIS (10.2). The semivariogram 

analyses were conducted before the application of ordinary Krigging interpolation on the soil physical properties. A 

semivariogram is defined by the following equation [12] as: 

                                      

where γ(h) is the experimental semivariogram value at a distance interval h, m(h) is number of sample value pairs 

within the distance interval h, Z(Xi), Z(Xi + h) are sample values at two points separated by the distance h. Several 

standard models were compared to determine the best fit experimental semivariogram, e.g., spherical, exponential, 

Gaussian and stable. These models are defined in the following equations respectively [13]: 

= Co + C1 [1 - exp (-h
2
/a

2
)]                   

 = Co + C1 [1 - exp (-h/a)]                  

= Co+ C1 [l.5 (h / a)
 3
] for h ≤ a                  

where C0 is the nugget variance (h = 0), C is the structural variance and a is the spatial range. Nugget variance 

represents the experimental error and field variation within the minimum sampling spacing. The nugget/sill ratio can 

be regarded as a criterion to classify the spatial dependence of soil properties. If the ratio is less than 25%, the 

variable has strong spatial dependence; between 25 and 75%, the variable has moderate spatial dependence; and 

greater than 75%, the variable shows only weak spatial dependence [14].  

Criteria for comparison of different interpolation models 

To compare different interpolation techniques, we examined the difference between the known data and the 

predicted data using the mean square error (MSE), average standard error (ASE), the root-mean-square error 

(RMSE) and the standardized root mean square error (RMSSE).  

Thus, if for every one of the locations where we have a measured value, Z(xi), we estimate a value Z'(xi) then 

standard value of them were Z1(xi)  and Z2(xi), then the expression of their  error’s are: 
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 If MSE (Mean standard error) approaches 0, ASE (Average standard error) approaches RMSE (Root-

mean-square error), RMSSE (Root-mean-square standardized error) approaches 1, it verifies the goodness of the 

fitted semivariogram models [15, 16]. 

As the semivariogram models of the soil data were evaluated, they were used in the development of maps by 

ordinary kriging interpolation [13].  

IV STATISTICAL ANALYSIS 

Descriptive statistics for soil Physical parameters  

Table 2 presents the summary statistics of the datasets for soil physical properties in the study area. The coefficient 

of variation values (CV) indicates low variability for particle density and bulk density, based on classification 

proposed by Gomes and Garcia (2002) [17]: low (CV<10%), medium (CV=10–20%); high (CV = 20-30%) and very 

high (CV>30%) variabilities. Nevertheless, CV is the most discriminating factor for describing variability of a soil 

property than the other parameters such as SD, mean, median, etc. [18], since it allows comparison among properties 

with different units of measurement. 

Probability distributions of the soil properties were evaluated using skewness and kurtosis. Minimum and maximum 

values of kurtosis are particle density and bulk density, respectively (Table 2). In spite of skewness and kurtosis of 

the distribution of some soil properties, the mean and median values were similar with means being equal to or 

almost equal to the median (Table 2). 

The normal distribution of data was examined by Quantile-Quantile (QQ) plot. The quantile-quantile plot (QQ plot) 

is a simple graphical method for comparing two sets of sample quantiles. The normal Q–Q plots for the raw data 

were produced (Fig. 2). All the soil physical parameters followed a straight diagonal line except for few samples that 

deviated from the majority slightly at both ends, indicating normal distribution. The reason for normally or non-

normal distribution may be due to differences in management practices, land use, vegetation cover, and topographic 

effects [19].  

A wide range of variability was found for soil physical properties (Table 2). For the mean data values it can be noted 

that soil bulk density ranged from 0.97 to 1.71 gcm
-3

 and particle density from 2.05 to 2.98 gcm
-3

. The bulk density 

was found higher in the sites where the upper layer was removed and subsurface layer was exposed which are highly 

compacted due to the intensive use of heavy implements [31].  
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V. SPATIAL VARIABILITY OF SOIL PROPERTIES 

After computing summaries of simple statistics with SPSS, data on soil physical properties was transferred to 

Arc.GIS (10.2) for semivariogram analysis. Semivariogram model fit was determined by cross-validation procedure. 

If MSE (Mean standard error) approaches 0, ASE (Average standard error) approaches RMSE (Root-mean-square 

error), RMSSE (Root-mean-square standardized error) approaches 1, it verifies the goodness of the fitted 

semivariogram models [20, 21]. 

Table 3 shows that among soil physical properties, best fit model for bulk density is spherical and the poor one was 

Gaussian model. There was no preferential model for soil particle density and all the models tested have same 

precision.  

When the distribution of soil properties is strongly or moderately spatially correlated, the average extent of these 

patches is given by the range of the semivariogram. For bulk density range value was 112.53 m (Table 3). There 

were big differences between ranges of the soil bulk densities as 900 to 1200 m by Santra et al. (2008) [31], 21 m by 

Rabbi (2014) [40] and 23 m by Yogita et al. (2012) [37]. Range value for soil particle density was 73.33m. The 

spatial variability is also an indication of the variable precision and hence its applicability. Based on the ratio of 

nugget and sill, the spatial dependency of the data was assessed. Cambardella et al. (1994) [15]  defined this ratio of 

< 25, 25 to 75, and > 75 as categories of strong, moderate, and weak spatial dependence, respectively. According to 

this classification, sand, clay, bulk density and particle density showed moderate and weak degree of spatial 

dependence are exhibited by silt and soil porosity (Table 3). The strong spatial dependence may be controlled by 

intrinsic variations in soil characteristics such as texture and mineralogy whereas extrinsic variations such as 

fertilizer application, tillage, soil and other management practices may control the variability of the moderately 

spatial dependent [19].  

VI. SPATIAL DEPENDENCE OF PHYSICAL VARIABILITY 

From the spatial distribution of soil bulk density as presented in fig. 3, it is clear that there is increased abundance of 

higher bulk density values (1.35-1.51 g/cm
3
) in the central part of south west direction and lowest value of bulk 

density (0.97-1.27 g/cm
3
) was found in northeastern, northwestern and in small area of southern direction of 

research farm. The clusters of high and low particle density in topsoil were located over the study area. Lower 

particle density (2.05 to 2.44 gcm
-3

) were observed in south and south west part of the study area and, higher values 

of particle density (2.59 to 2.98 gcm
-3

) appeared in northwestern and north eastern part of the study area. 

Distribution of soil porosity shows that there is certainly higher soil porosity (52.38 to 58.36%) at north eastern 

direction and comparatively homogenous pattern were obtained in the southwestern and northwestern part of area 

(Fig. 3).  
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VII. TABLES AND FIGURES 

Table 1 Description of georeferenced sampling sites of research farm of SKUAST-K, Shalimar  

Map ID Latitude Longitude  Map ID Latitude Longitude 

2 34.1457 74.8796  50 34.1480 74.8828 

3 34.1458 74.8801  51 34.1480 74.8834 

5 34.1457 74.8812  54 34.1484 74.8796 

6 34.1462 74.8790  55 34.1484 74.8801 

7 34.1461 74.8797  56 34.1484 74.8807 

9 34.1461 74.8807  57 34.1485 74.8812 

10 34.1462 74.8812  58 34.1484 74.8818 

21 34.1470 74.8791  59 34.1484 74.8823 

22 34.1471 74.8796  60 34.1484 74.8829 

23 34.1471 74.8800  61 34.1484 74.8834 

24 34.1470 74.8806  65 34.1489 74.8801 

25 34.1471 74.8812  66 34.1489 74.8806 

26 34.1471 74.8817  67 34.1489 74.8813 

27 34.1471 74.8823  68 34.1490 74.8817 

28 34.1471 74.8828  69 34.1489 74.8823 

30 34.1475 74.8780  70 34.1488 74.8824 

31 34.1475 74.8785  71 34.1488 74.8834 

32 34.1478 74.8793  72 34.1489 74.8839 

33 34.1474 74.8799  75 34.1493 74.8801 

34 34.1475 74.8802  76 34.1494 74.8807 

35 34.1475 74.8808  77 34.1493 74.8812 

36 34.1473 74.8812  78 34.1493 74.8818 

37 34.1475 74.8819  79 34.1493 74.8823 

38 34.1475 74.8823  80 34.1493 74.8828 

39 34.1475 74.8828  81 34.1493 74.8834 

42 34.1479 74.8785  82 34.1493 74.8839 

43 34.1479 74.8791  84 34.1498 74.8812 

44 34.1480 74.8796  85 34.1498 74.8818 

45 34.1479 74.8801  86 34.1498 74.8823 

46 34.1479 74.8807  87 34.1498 74.8828 

47 34.1479 74.8811  88 34.1498 74.8834 

48 34.1480 74.8818  89 34.1498 74.8839 

49 34.1479 74.8823  91 34.1502 74.8817 
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Table 2 Descriptive statistics for soil physical properties in a research farm of SKUAST-K farm 

Soil Parameter Mean Median Mode Min Max Range SD CV Skewness Kurtosis 

Bulk Density 1.29 1.28 1.29 0.97 1.71 0.74 0.12 9.14 0.53 2.13 

Particle Density 2.54 2.56 2.56 2.05 2.98 0.93 0.19 7.33 -0.31 0.25 

        
 

  
Table 3 Values of model parameters used to find the best semivariogram 

Soil Parameter Model 
Nugget 

Partial 

sill 
Sill 

Range DSD (%) SD 
Estimated error 

C0 C1 CO+C1 MSE ASE RMSE RMSSE 

 
Stable 0.01 0.006 0.016 94.94 62.50 Moderate -0.01 0.13 0.12 0.98 

Bulk density Gaussian 0.01 0.006 0.016 94.94 62.50 Moderate -0.01 0.14 0.12 0.99 

 
Exponential 0.004 0.01 0.014 94.94 28.57 Moderate -0.01 0.13 0.12 0.97 

 
Spherical 0.009 0.007 0.016 112.53 56.25 Moderate 0.002 0.12 0.12 0.96 

 
Stable 0.022 0.008 0.03 100 73.33 Moderate -0.05 0.18 0.17 0.97 

Particle density Gaussian 0.026 0.003 0.029 100 89.66 Weak -0.05 0.18 0.17 0.97 

 
Exponential 0.022 0.008 0.03 100 73.33 Moderate -0.05 0.18 0.17 0.97 

 
Spherical 0.025 0.005 0.03 100 83.33 Weak -0.05 0.18 0.17 0.97 

 

Fig. 1 Georeferenced sampling sites of research farm of SKUAST-K, Shalimar 
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Fig. 2  Normal Q–Q plot for selected soil physical properties. 

               

Fig. 3    Spatial distribution map of bulk densityand particle density interpolated by ordinary 

krigging 

 

IX. CONCLUSION  
 

Soil physical properties were analyzed for their spatial variability in a research farm of SKUAST-K, Shalimar. 

Results showed that disturbances in the soil by cut and fill resulted in variability of soil physical properties, which 

either decreased or increased sharply in different sites. In addition, depending on soil physical property, maps 

produced by kriging showed either good or poor spatial distribution. The semivariogram analysis showed the 

presence of a moderate spatial dependence of soil physical properties. Our understanding of the behavior of soil 

properties in this study provides new insights for soil site-specific management in addressing issues like 

identification of sites which needs immediate attention. 
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