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ABSTRACT 

Investigating the existence of an asymptotic expansion to all orders for the solution of (P II), within a certain 

‘range of the initial value parameters; we then give an improved (more explicit) version of the R.H. treatment 

for (P II) in the particular case we are interested in (i.e., = 0, solutions bounded on the real axis). We then 

take advantage of this linearization to reduce the connection problem to a rather intricate-stationary phase 

analysis; from it we extract the amplitude part of the connection formula (presumably the phase part could also 

be derived in this way, but we did not manage to digit out). The form of the expansion and the integral equation 

also shed some light on the behaviour of the solution, in the large, and it fits especially well with the appearance 

of poles on the real axis when becomes larger than 1. 

Keywords  Asymptotic expansion, meromorphic, rational transformation, riccati equation, 

transcendence degree. 

 

I ASYMPTOTIC INTRODUCTION 

In the past few years, much work has been devoted to the so called Painleve equations. Let us recall that these 

were first studied by Painleve and his pupils-around 1900  he recognized that they were essentially the only 

second-order equations (besides the elementary ones: linear, Riccati, elliptic equations,...) such that the movable 

singularities are poles (i.e., movable essential singularities are excluded). It was also shown that Eq. (P VI) is a 

particular case of the Schlesinger equations which describe the isomonodromic deformations of linear equations 

with regular singular points. The other equations can be obtained by a limiting procedure. Interest in the 

Painleve equations revived when Ablowitz, Ramani, and Segur showed that reductions of PDE‟s solvable by the 

inverse spectral transform should be of Painled type, and consequently should reduce to elementary equations 

(this almost never occurs) or to one of the six Painleve transcendants. Shortly after, the Japanese school 
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undertook the generalization of the deformation theory to linear systems with irregular singular points and found 

various results on the Painled equations as a by-product. 

 The present paper deals with some properties of the second Painleve equation  

 

and we shall in fact consider the special case = 0; it is the only case where it is known that there exist solutions 

bounded on the real r-axis. 

Flachka and Newell are the compatibility condition between two linear systems with rational coefficients and 

reduced it to a Riemann-Hilbert (R.H.) problem along a certain contour, the solution of which was equivalent to 

that of a singular integral equation. In Fokas and Ablowitz made the solution more explicit by disentangling the 

R. H. problem into a cascade of three R. H. problems along lines, or equivalently, a sequence of three Fredholm 

equations, the kernel of each one being given through the solution of the preceding one. It may be amusing to 

notice that they used a trick already employed by Beals and Coiffman, but which can also be found almost 

explicitly in Birkhoffs study of the Riemann problem. In the linearization (reduction to linear integral equations) 

via a R.H. problem, one of the advantages, as pointed out is that the independent variable t appears only as a 

parameter and the integration is performed on a spectral parameter z this is to contrast with the Gelfand-Levitan 

equation approach, where the integration is over t. Although the difference more or less amounts to a Fourier 

transform, it was suggested that the R.H. approach could be put to use in order to solve the so-called connection 

problem. Let us first recall its formulation; for any r  (0, 1) there exists a solution such that  

 

The problem consists in describing the asymptotic behaviour of this solution when t approaches - ; it still has 

the form of the Airy function, but with other values of the parameters. More precisely  

 

     

These formulas can be found readily by a formal asymptotic expansion of the solution near - . The global 

connection problem consists in finding the two functions d= d(r) (amplitude) and (phase). We 

show below that the solution does in fact admit an asymptotic expansion is the first term and we recover the 

amplitude formula  

 

We are also able to give some details on the terms of the expansion. This was first obtained by ingenious 

roundabout methods and, as the authors themselves pointed out, it was rather a “derivation” than a proof, since 

many steps rely on formal asymptotic expansions for an associated PDE which would be extremely difficult to 

rigorize. Using the Gelfand-Levitan equation we proved recently by Mac Leod and Clarkson that they have 

obtained the phase formula  
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which was formally derived. Let us notice that this connection problem is physically important because it 

provides a rather ubiquitous model for the reflection through a nonlinear caustic. The Japanese school has also 

obtained using the z function, results which pertain to the connection problems associated with some of the 

Painleve equations, but it may be worth pointing out that, since they consider the theory from the deformation 

viewpoint, (P VI) appears to be the simplest equation and (P I) and (P II) the most difficult to deal with (even 

though they are much simpler to write down) because they correspond to the coalescence of many singularities; 

this explains that it cannot be found explicitly-nor be deduced in a straightforward way-from their work. 

The paper is organized as follows. We first prove the existence of an asymptotic expansion to all orders for the 

solution of (P II), within a certain „range of the initial value parameters; we then give an improved (more 

explicit) version of the R.H. treatment for (P II) in the particular case we are interested in (i.e., = 0, solutions 

bounded on the real axis). We then take advantage of this linearization to reduce the con- nection problem to a-

rather intricate-stationary phase analysis; from it we extract the amplitude part of the connection formula 

(presumably the phase part could also be derived in this way, but we did not manage to digit out). The form of 

the expansion and the integral equation also shed some light on the behaviour of the solution, in the large, and it 

fits especially well with the appearance of poles on the real axis when becomes larger than 1. 

 

II ASYMPTOTIC DEVELOPMENTS  

 

In this part, we will prove the existence of asymptotic developments of a certain form for the solution of (P II). 

Since we are interested in the oscillating part of the solution, it will be convenient to change t into -t, and also to 

perform a scaling on the unknown function. we thus write the equation 

 

where f is defined on some interval  and c is a complex number noticed that if c=0,  is a Airy 

equation, and for all c, cf  is the Painleve transcendent. 

In this we settled the problem of the irreducibility of the first differential equation of Painleve. Namely we 

proved that no solution of the first Painleve equation is classical. So the first Painleve equation defines highly 

transcendental functions different from the classical functions. The proof depends on the condition introduced in 

which is of arithmetic nature and plays an important role in the proof of the irreducibility of the first equation. 

 Our framework tells us that if an ordinary algebraic differential equation of second order satisfies the condition, 

then no transcendental solution of the differential equation is classical.  

 In this paper we discuss in this framework the irreducibility of the second and fourth equations of Painleve.  

 

                

Since, for particular values of the complex parameters α, the equations  and  have algebraic 

solutions, or classical solutions rationally expressed by solutions of Riccati equations. Our objective should be 

the determination of all the classical solutions of the equations. To this end, we have to do the following: 
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(i) To show that the second and fourth equations satisfy the condition for general α, β. 

(ii) To determine transcendental classical solutions for particular values of the parameters α, β for which the 

second and fourth equations do not satisfy the condition. 

(iii) To list up all the algebraic solutions. 

In their proofs, we use birational transformations between solutions of a Painleve equation. As for (iii) Murata 

determined algebraic solutions of second and fourth equations. (i) and (ii) were done by Noumi and Okamoto 

for the second and fourth equations respectively. Murata worked out with the third Painleve equation. All these 

works were done in the above framework. But in these works the authors checked the arithmetic condition by 

straightforward calculations. The calculations are hard particularly in the fourth and third equations, so that there 

is little hope of applying their calculations to the fifth and sixth Painleve equations. We analysed the note of 

Okamoto on the fourth Painleve equation and tried to simplify his argument so that we can treat the fifth and 

sixth equations. We succeeded in this attempt, and we are preparing papers on solutions of the third, fifth and 

sixth equations. The aim of the present paper is to explain our method for the second and fourth equations.  

 

 III SECOND PAINLEVE EQUATION 

The second Painleve equation is equivalent to the following system  of ordinary differential equations of 

first order 

   `  

where  is a complex parameter. In fact, if we eliminate the unknown p from  we get the second 

Painleve equation 

 

So the second Painleve equation  and the system  are parametrized by the complex line C.  

We review birational transformations of solutions of the system associated with a group of complex 

affine transformations of the complex line C. We define affine transformations s,  of C by 

C. Let G be the subgroup generated by them in the 

group of complex affine transformations of the complex line C. Then the group G is isomorphic to the 

semidirect product of a cyclic group (s) of order two and a group ( ). Since the latter group is isomorphic to 

the additive group of the integers Z, we find , so that it is isomorphic to the affine Weyl group of 

the root system of type. Let  be the subset of C that consists of all the complex numbers a satisfying the 

following conditions: 
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where and  denote the real and imaginary parts respectively of a complex number v. We see that  

is a fundamental region of C for the group G.  

For C, let Σ(α) be the set of solutions (p, q) of the system . Here we assume that a solution is 

meromorphic over a complex domain. We set (disjoint union). We define rational 

transformations of the set Σ as follows  

we define Σ(—1 — α) by 

 

and 

 

We define Σ( ) by 

      if   , 

and 

 

The definitions of  are well-defined by the following facts for  

p  

 

In fact, the assertion  

is trivial. If , we have , which proves the assertion (ii).  

Since we have  = 1, where 1 denotes the identity transformation of Σ, we see that the mappings 

 define birational transformations. Let  be the subgroup generated by  and in the 

group of all bijections of the set Σ. The group  consists of birational transformations of Σ that respect the 

natural fibration denned by . Hence we have a surjective group morphism 

φ of   onto G such that . Since and  is an 

isomorphism of  onto G.  

Since g is C(t)-birational, a solution (p, q) is classical (resp. algebraic, rational) if and only if the solution g(p, q) 

is classical (resp. algebraic, rational). Now let us state our main result for the second Painleve equation. 
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IV THEOREM 

For every integer there exists a unique rational solution of the system .  

(ii) For every  there exists a unique one-parameter family of classical solutions of , of which 

each solution is rationally written by a solution of a Riccati equation 

 

 (iii) Let (p, q) be a solution of  different from those mentioned in (i) and (ii). Then neither the function p 

nor the function q is classical, and the transcendence degree of    C (t,p,q) over C(t) equals two. 

Using the birational transformations introduced above, we can explicitly write the solutions (p,q) in the 

assertions (i) and (ii). In fact, if (p, q) is a rational solution of for , then we have 

 

If (p, q) is one of the classical solutions of  in (ii), then we have  

, 

where is a solution of the Riccati equation (1).  

Let us introduce a new unknown u by 

 

Substituting it into (1), we obtain the Airy differential equation 

 

Hence all the classical solutions of for  are rationally generated from Airy functions. We 

explain here how we prove the theorem. Let K be an ordinary differential overfield of C(t) with derivation δ and 

let K[p,q] be the polynomial ring over K in two variables p and q. According to §1, we introduce a derivation 

X( ) on K[p, q] by 

 

To prove the theorem, we may assume that the parameter  belongs to the fundamental domain  by the 

operation of G. The proof consists of the following three parts:  

Non-classical solutions. If there exists an X (α) - invariant curve defined over for any differential 

extension K/C(t), then we have a  We conclude, for such that , every solution 

of is non-classical if it is not algebraic.  

Classical solutions. For every X (-l/2) - invariant polynomial F in K[p, q] and not in K, there exists an integer i > 

0 such that So every transcendental classical solution of  is defined by the Riccati 

equation.  
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Algebraic solutions. The system has a rational solution if and only if  = 0. The solution (p, 

q) = (t/2, 0) is a unique rational solution of  (In particular the assumption "if it is not algebraic" in (I) is 

always satisfied.). 

 

V FOURTH PAINLEVE EQUATION  

The following system of ordinary differential equations 

 

 

where  denotes an arbitrary vector on a complex plane V in  defined by 

The system is equivalent to the fourth Painleve equation: 

 

In fact if we eliminate the unknown p from , we get  under the relations:  

 

                    . 

In order to state birational transformations of solutions of the system  associated with a group of affine 

transformations of the complex plane V. We define three affine transformations of V 

by . We have where 1 

denotes the identity transformation of V. Let G be the subgroup generated by in the group of all 

complex affine transformations of V. We can also choose by as generators of the group G. Let H be 

the subgroup of G generated by  Let Γ be the subset of V that consists of all the vectors 

 satisfying the following conditions: 

 

 

 

 

 

 

Here  denote the real and imaginary parts respectively of a complex number v. 

LEMMA 

The subset Γ is a fundamental region of V for the group 

Proof: 
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 We set  

and  

 . 

The subset Γ is a fundamental region of the real vector space V for the group H, because the set Γ' is the closure 

of an alcove of the affine Weyl group H. We set  

 

We have  Γ, and the interior of  agrees with that of Γ. Every H orbit on V contains a point of Γ, because 

Γ‟ is a fundamental region of V‟. We show that the intersection of each H-orbit Ω and the subset Γ consists of 

one point. It is easy to see that this fact proves the lemma. The difference between Γ‟ and Γ consists of 

boundary. So we may assume that the H-orbit Ω contains a point of boundary. For example, let us analyse what 

happens on a boundary stratum 

 

The stratum  is  invariant. If we set 

 

 

   , 

then we have a decomposition (disjoint union).  

 

VI CONCLUSION 

To provide a complete classification and unified structure of the special properties which the Painlevé equations 

and Painlevé σ-equations possess the presently known results are rather fragmentary and non-systematic. 

Develop algorithmic procedures for the classification of equations with the Painlevé property. Develop software 

for numerically studying the Painlevé equations which utilizes the fact that they are integrable equations 

solvable using isomonodromy methods. To produce a general theorem on uniform asymptotics for linear 

systems to cover all those systems which arise as isomonodromy problems of the Painlevé equations. 
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