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ABSTRACT 

This research paper determines a formula for the number of subgroups of the dihedral groups D(n). I created 

the operation tables and lattice of subgroups for D(3) through D(8). After creating the lattice of subgroups I 

determined the elements of D(n) that generate each subgroup of D(n). This led to the formula 𝑆𝑛 = 𝜏 𝑛 +

𝜍(𝑛), where Sn represents the number of subgroups of D(n), 𝜏 𝑛  represents the number of positive divisors of 

n, and 𝜍(𝑛) represents the sum of the positive divisors of n. It has always been a difficult task in determining the 

behaviors of reflections and rotational symmetries in these symmetry groups and how much information can be 

obtained from there symmetries. We therefore study the nature and properties of these symmetry elements 

including the conjugacy class size in both Sn and Dn. It was found that the conjugacy classes of Sn are 

determined by their cycle type while that of Dn is a special case, where the relation “Conjugacy” is an 

equivalence relation. The representations of the conjugacy class size of Dn reveals that the order of the centers 

of Dn are 1 (for nodd) and 2 (for n-even), and consequently, leading to two different class equations of Dn.This 

paper will conclude with a description of how D(n) can be utilized in a secondary classroom. Since abstract 

algebra is not a topic primarily focused upon in secondary education, this section will contain a lesson in which 

students will be asked to determine the symmetries/permutations of various figures. During this lesson students 

will be introduced to the definition of line of symmetry, rotational symmetry, and composition. Students will be 

given various figures and asked to list all of the symmetries for each.  Next, students will create a system to list 

the permutations of certain regular polygons. The target learning goal of this lesson is for students to identify 

the combination of permutations that yield the identity of each figure. The extension of this lesson will be for 

students to relate the permutations of a two-dimensional figure to a three-dimensional figure.  

Keywords: {Dihedral Group D(n), 𝝉 𝒏 , 𝝈(𝒏), Sn, Permutations, Subgroups} 
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I.INTRODUCTION 

 Given any set X and a collection G of all bijections of X onto itself (also known as permutation) that is closed 

under compositions and inverses, G is a group acting on X. If X consists of n elements and G consists of all 

permutations, then G is the symmetric group Sn, generally referred by Lang, (2005) as subgroup of the 

symmetric group of X. Permutation groups and matrix groups are special cases of transformation groups; group 

that act on a certain space X preserving its inherent structure. In the case of permutation groups, X is a set. An 

early construction due to Cayley, exhibited any finite group as a permutation group acting on itself (X=G) 

(Nummela, 1980). The concept of transformation group is closely related to the concept of symmetric group. 

Transformation groups frequently consist of all transformations that preserve a certain structure (Robinson, 

1996). In group theory, a dihedral group is the group of symmetries of a regular polygon, including both 

rotations and reflections (Dummit, 2004). Dihedral groups are among the simplest examples of finite Int. 

 J. Pure Appl. Sci. Technol., 15(1) (2013), 87-95 

This project will make use of the definition that all of the permutations for each of the dihedral groups 

D(n) preserve the cyclic order of the vertices of each regular n-gon. This demonstrates the relationship between 

the abstract concept of D(n) and the rigid motions of a regular n-gon. From this, I will denote the rotation 

symmetry for each of the regular n-gons of  
2𝜋

𝑛
 (clockwise) as 𝜌, the reflection symmetry as 𝜃, and the original 

n-gon as 𝜀. For example, in the following diagram the identity of the square (𝜀) is the square in which each 

vertex and side is matched. Since a square has 4 sides, the rotation 𝜌 is equal to 
2𝜋

4
 which is a 90⁰  clockwise 

rotation, 𝜌2is equivalent to a 180⁰  clockwise rotation, 𝜌3 is equivalent to a 270⁰  clockwise rotation, and 𝜌4 is 

equivalent to a 360⁰  clockwise rotation which is equivalent to the identity 𝜀. 𝜃 can be noted as the reflection 

about the vertical line which passes through the center of the square (as seen below), 𝜌𝜃 can be noted as the line 

of symmetry which passes through the vertices 2 and 4, 𝜌2𝜃 can be noted as the horizontal line of symmetry 

which passes through the center of the square, and 𝜌3𝜃 can be noted as the line of symmetry which passes 

through the vertices 1 and 3.  

𝜃  𝜌𝜃 

 

  

 𝜌2𝜃 

 

  𝜌3𝜃 

The Dihedral Group D(n) 
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 I will begin this section by describing what each dihedral group D(n) represents. I will define the 

notation used to create each group D(n), the operation tables, and the lattice of the subgroups for each n. From 

this, the formula that outputs the number of subgroups of the dihedral group D(n) will be conjectured.  

 As described in the background information, the two types of symmetries that regular polygons have 

are rotational symmetry and line symmetry. Each of the rotational symmetries will be labeled as the powers of 

ρ, each line of symmetry will be labeled as the powers of ρ times 𝜃, and 𝜀 will represent the original regular 

polygon such that the vertices are in their original circular order. Each of the dihedral groups will be represented 

in this paper using this notation.  

To determine the number of subgroups of D(n) and the process to derive the formula I will identify 

representations for each dihedral group D(n). This includes a) a picture of the regular polygons, b) the elements 

contained in the group D(n), c) the operation table, and d) the lattice of the subgroups for each D(n).  The 

operation tables define all of the symmetry operations. The operation tables are used to identify the closure of a 

set; subsequently, identifying all of the subgroups. The lattices of the subgroups begin with the entire group 

D(n) and will branch to each subgroup that is a subset (or contained) in the group connected above until it 

reaches the identity ε. The representation for a clockwise rotation of a regular triangle, ρ, will be represented as 

 123
231

  or 12, 23 and 31 

Group Structure of Dn 

The composition of two symmetries of a regular polygon is again symmetry, as in the case of 

geometric object. It is the result of this operation that gives the symmetries of a regular polygon the algebraic 

structure of a finite group (Samaila, 2010). The composition operation is not commutative, and in general, the 

group Dn has the following elements: Dn = {r0 = e, r1, r2, …, rn-1, f0, f2, …, fn-1} with the following 

properties: ri rj = r(i+j)modn; ri fj = f(i-j)modn; fj ri = f(j-i)modn, fi fj = r(i-j)modn. The 2n elements of Dn can 

be written as e, r, r 2 , …, r n-1 , f, rf, r 2 f, …, r n-1f. The first n elements are the elements of the rotations and 

the remaining n elements are axes reflections (all have order 2). Obviously, the product of two rotations or two 

reflections is a rotation, while the product of a rotation and a reflection is a reflection. From the information 

provided so far on Dn, it is therefore convenient to write Dn as Dn = 〈 r, f | r n = e = f 2 , f rf = r -1 , rfr = f 〉  1 

The group with representation as in equation 1 above or as Dn = 〈 x,y|x 2 = y 2 = (xy) = e〉  2 From the second 

presentation, it follows that Dn belongs to the class of Coxeter groups. 

The Collection of the Number of Subgroups of Dihedral Group D(n) 

n Number of Subgroups of D(n) 

3 6 

4 10 

5 8 

6 16 
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7 10 

8 19 

Now that D(3) through D(8), along with their subgroups have been described, I will now investigate the 

mathematics  behind creating a formula that outputs the number of subgroups for D(n). The formula was 

contrived through trial and error while I was trying to generate the list of subgroups of D(n). I quickly noted that 

D(n) will always contain the subgroup D(n), the subgroup ε, and the subgroups generated by 𝜌𝑎𝑖  where ai are the 

positive divisors of n. If k is relatively prime to n then no additional subgroups can be generated by 𝜌𝑘 . Modular 

arithmetic demonstrates that a relatively prime number will generate every number contained in the set created 

by mod(n); therefore, each subgroup corresponds to a factor of n.  

 I will investigate the subgroups for D(4) and D(8). It is noted for D(4) that the factors of 4 are 1,2, and 

4. The subgroups of D(4) are as follows; 

 𝐷4 ,  𝜌, 𝜌2, 𝜌3, 𝜀 ,  𝜌2, 𝜀 ,  𝜀 ,  𝜌2, 𝜃, 𝜌2𝜃, 𝜀 ,  𝜌2, 𝜌𝜃, 𝜌3𝜃, 𝜀 ,  𝜃, 𝜀 ,  𝜌𝜃, 𝜀 ,  𝜌2𝜃, 𝜀 ,  𝜌3𝜃, 𝜀 . I will break these 

subgroups into two groups: a) subgroups that only contain rotations and b) subgroups that contain reflections.  

a)  Looking at the three subgroups which contain rotations of the square; 𝜌 will generate the subgroup 

only containing rotations generated by a 90⁰  clockwise rotation, 𝜌2
 will generate the subgroup of 

rotations generated by a 180⁰  clockwise rotation, and 𝜌4
 (or ε) will generate the last subgroup that is 

generated by a 360⁰  clockwise rotation. Thus I can conjecture that the number of subgroups of D(4) 

that only contain rotations is equivalent to the number of factors of 4.  

b) I will now investigate the subgroups that contain rotations and reflections. The subgroup generated by 

𝜌 and 𝜃 will produce the the entire group D(n). The subgroup generated by 𝜌2
 and 𝜃 will produce 

 𝜌2, 𝜃, 𝜌2𝜃, 𝜀 . The subgroup generated by 𝜌2 𝑎𝑛𝑑 𝜌𝜃 will produce 𝜌2, 𝜌𝜃, 𝜌3𝜃, 𝜀 . The subgroups 

generated by 𝜌4
 or 𝜀 and each individual reflection are  𝜃, 𝜀 ,  𝜌𝜃, 𝜀 ,  𝜌2𝜃, 𝜀 , 𝑎𝑛𝑑  𝜌3𝜃, 𝜀 . All things 

considered, I am able to conjecture that the number of subgroups of D(4) is equivalent to 3+1+2+4. 

This is equivalent to the number of factors of 4 plus each factor of 4.  

Now that I have investigated the number of subgroups for D(4), D(8) will be explored where there are a 

total of 19 subgroups. Throughout this section I will examine two categories of subgroups: a) subgroups that 

only contain rotations and b) subgroups that contain reflections. Identifying how each subgroup of D(8) is 

generated will reveal the formula that outputs the number of subgroups of D(8). 

a) In D(8) the subgroups that only contain rotations are 

 𝜌, 𝜌2, 𝜌3, 𝜌4 , 𝜌5 , 𝜌6, 𝜌7 , 𝜀 ,  𝜌2, 𝜌4, 𝜌6, 𝜀 ,  𝜌4, 𝜀  𝑎𝑛𝑑  𝜀 .  The subgroup  𝜌, 𝜌2, 𝜌3, 𝜌4 , 𝜌5, 𝜌6, 𝜌7, 𝜀  

represents the subgroup of rotations generated by 𝜌,   𝜌2, 𝜌4, 𝜌6, 𝜀  is the subgroup of rotations that is 

generated by 𝜌2,  𝜌4, 𝜀  is the subgroup of rotations that is generated by 𝜌4, and  𝜀  is the subgroup 

that is generated by 𝜌8 or the identity. The importance of this section is to realize that D(8) has four 

subgroups that only contain rotations. Notice that eight has four factors of 1, 2, 4 and 8.  
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b) The subgroups that contain both rotations and reflections are 

 𝐷8 ,  𝜌2, 𝜌4, 𝜌6, 𝜃, 𝜌2𝜃, 𝜌4𝜃, 𝜌6𝜃, 𝜀 ,  𝜌2 , 𝜌4, 𝜌6, 𝜌𝜃, 𝜌3𝜃, 𝜌5𝜃, 𝜌7𝜃, 𝜀 ,  𝜌4, 𝜃, 𝜌4𝜃, 𝜀 ,  𝜌4, 𝜌𝜃, 𝜌5𝜃, 𝜀 , 

 𝜌4, 𝜌2𝜃, 𝜌6𝜃, 𝜀 ,  𝜌4, 𝜌3𝜃, 𝜌7𝜃, 𝜀 ,  𝜃, 𝜀 ,  𝜌𝜃, 𝜀 ,  𝜌2𝜃, 𝜀 ,  𝜌3𝜃, 𝜀 ,  𝜌4𝜃, 𝜀 ,  𝜌5𝜃, 𝜀 ,  𝜌6𝜃, 𝜀 , 𝑎𝑛𝑑  𝜌7𝜃, 𝜀 . 

Similar to the rotations, I will focus on the subgroups along with their reflections that are generated by 

𝜌, 𝜌2, 𝜌4, 𝑎𝑛𝑑 𝜌8. The subgroup  𝜌2, 𝜌4, 𝜌6, 𝜃, 𝜌2𝜃, 𝜌4𝜃, 𝜌6𝜃, 𝜀  is generated by 𝜌2 𝑎𝑛𝑑 𝜃 and 

 𝜌2, 𝜌4, 𝜌6, 𝜌𝜃, 𝜌3𝜃, 𝜌5𝜃, 𝜌7𝜃, 𝜀  is the subgroup that is generated by 𝜌2 and 𝜌𝜃. Notice that 𝜌2 

generates two subgroups that contain reflections. The subgroup  𝜌4, 𝜃, 𝜌4𝜃, 𝜀  is generated by 

𝜌4 𝑎𝑛𝑑 𝜃,  𝜌4, 𝜌𝜃, 𝜌5𝜃, 𝜀  is the subgroup that is generated by 𝜌4 𝑎𝑛𝑑 𝜌𝜃,  𝜌4, 𝜌2𝜃, 𝜌6𝜃, 𝜀  is the 

subgroup that is generated by 𝜌4 𝑎𝑛𝑑 𝜌2𝜃, and  𝜌4, 𝜌3𝜃, 𝜌7𝜃, 𝜀  is the subgroup that is generated by 

𝜌4 𝑎𝑛𝑑 𝜌3𝜃. Thus, 𝜌4 will generate four subgroups that contain reflections. The remaining subgroups 

that contain reflections and the identity are 

 𝜃, 𝜀 ,  𝜌𝜃, 𝜀 ,  𝜌2𝜃, 𝜀 ,  𝜌3𝜃, 𝜀 ,  𝜌4𝜃, 𝜀 ,  𝜌5𝜃, 𝜀 ,  𝜌6𝜃, 𝜀 , 𝑎𝑛𝑑  𝜌7𝜃, 𝜀 . Notice that 𝜌8 will generate 

eight subgroups that contain reflections. This section demonstrates that D(8) is equivalent to 

4+1+2+4+8 which results in 19 total subgroups. Therefore, the number of subgroups of D(8) is equal to 

the number of factors of eight plus each factor of eight.  

 Throughout this section I will refer to each lattice of D(n)’s subgroups to validate my conjecture Sn will 

represent the number of subgroups of D(n). The number of subroups for D(3) is represented as S3. The 

collection of subgroups of D(n) demonstrates that S3 is 6 and the factors of 3 are 1 and 3, then S3 is 2+3+1, or 6 

total subgroups. Similarly, D(5) has 8 subgroups, and my conjecture states that 𝑆5 = 2+1+5, or 8 total 

subgroups. The formula that determines the number of subgroups of D(n) is gleaned from the lattice of 

subgroups, as is reflected in the table below.  

n Number of Subgroups of D(n) Sn 

3 6 2+3+1 

4 10 3+1+2+4 

5 8 2+1+5 

6 16 4+1+2+3+6 

7 10 2+1+7 

8 19 4+1+2+4+8 

 As stated earlier, the symmetries of any regular n-sided polygons are the elements of D(n), and the 

subgroups of D(n). The function which determines the number of subgroups of D(n) will utilize 𝜏 and 𝜍. By 

definition, “Given a positive integer n, let 𝜏(𝑛) denote the number of positive divisors of n, and 𝜍(𝑛) denote the 
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sum of these divisors” (Burton, 1976). For example, the number 14 has the positive divisors 1, 2, 7, and 14 

which means 𝜏(14)=4 and 𝜍 14 = 1 + 2 + 7 + 14 = 24; consequently, S14 is equal to four plus twenty four. 

The reader’s reflection should be, “Does this formula work for every dihedral group D(n)?”  

The Fundamental Theorem of Arithmetic states, If n = p1
k1 p2

k2 … pr
kr  is the prime factorization of n > 1, then the 

positive divisors of n are precisely those integers d of the form d = p1
a1p2

a2 … pr
ar , where 0 ≤ ai ≤ k i (i=1,2,…, r) 

stands. This implies that if d is a divisor of n, then d will generate the subgroup of rotations 𝜌𝑑 , 𝜌2𝑑 , …, 𝜀, a 

subgroup of D(n). From this we can determine the number of subgroups of D(n). Let’s begin by determining the 

value for S24. The factors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24. The prime factorization of 24 is 2
3
3

1
; thus, 24 has 

(3+1)(1+1) = 8 positive factors, implying that D(24) has eight subgroups that contain only rotations. The sum of 

the factors is 1 + 2 + 3 + 4 + 6 + 8 + 12 + 24 = 56 = 𝜍(24), implying that D(24) has 56 subgroups that 

contain reflections; therefore, 𝑆24 = 𝜏 24 + 𝜍 24 = 8 + 56 = 64. D(24) has 64 subgroups.  

Proof 

 Now that we have an understanding of how each subgroup is generated, and know that the formula 

works for S3 through S8, I will prove that 𝑆𝑛 = 𝜏 𝑛 + 𝜍 𝑛  for any given n. The proof for this consists of two 

parts: a) prove that 𝜏 𝑛  represents the number of subgroups that only contain rotations and b) prove that 𝜍 𝑛  

represents the number of subgroups that contain reflections.  

a. By definition, 𝜏(n) denotes the number of positive divisors of a positive integer n. Let d and n 

represent positive integers such that d is a divisor of n. Since d is a divisor of n then there 

exists an m such that m=n/d.  𝜌𝑑  will generate the closed set  𝜌𝑑 , 𝜌2𝑑 , 𝜌3𝑑 , … , 𝜌𝑛−𝑑 , 𝜌𝑛  of 

rotations. In order for this closed set generated by 𝜌𝑑  to be a subgroup, it must contain the 

inverse for every element in the set using properties of exponents, 𝜌𝑑 ∙ 𝜌𝑛−𝑑 = 𝜌𝑛 = 𝜀, 𝜌2𝑑 ∙

𝜌𝑛−2𝑑 = 𝜀, 𝜌3𝑑 ∙ 𝜌𝑛−3𝑑 = 𝜀, ⋯. Because the set generated by 𝜌𝑑  is closed and contains the 

inverse of each element, then the set generated by 𝜌𝑑  is a subgroup. This demonstrates that 

every power of 𝜌 which is a divisor of n will generate a subgroup of rotations. Also, any 

multiple of d that is not also a divisor of n will generate the same subgroup as 𝜌𝑑 , and any 

power of ρ that is relatively prime to n will generate the same subgroup as ρ. In conclusion, 

the number of subgroups of D(n) that only contain rotations is equal to the number of divisors 

of n which can be symbolized by 𝜏(n).  

b. By definition, 𝜍(n) is the sum of the positive divisors of n. I want to prove that 𝜍(n) represents 

the number of subgroups that contain reflections. Let the variables z, n and d represent 

positive integers such that d is a divisor of n, 𝜍(n)=z+d, and 0 ≤ ai ≤ d (ai=1,2,…, d). The 

subgroups generated by 𝜌𝑑  and 𝜌𝑎𝑖𝜃 can be listed as;  𝜌𝑑 , 𝜌2𝑑 , … , 𝜀, 𝜃, 𝜌𝑑𝜃, 𝜌2𝑑𝜃, …  , 

 𝜌𝑑 , 𝜌2𝑑 , … , 𝜀, 𝜌𝜃, 𝜌𝑑+1𝜃, …  ,  𝜌𝑑 , 𝜌2𝑑 , … , 𝜀, 𝜌2𝜃, 𝜌𝑑+2𝜃, …  , … , 

 𝜌𝑑 , 𝜌2𝑑 , … , 𝜀, 𝜌𝑑−1𝜃, 𝜌2𝑑−1𝜃, …  . Each subgroup generated by 𝜌𝑑  and 𝜌𝑎𝑖𝜃 will contain a 
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specific element from the set  𝜃, 𝜌𝜃, 𝜌2𝜃, … , 𝜌𝑑−1𝜃 . This set has a total of d elements which 

means that each 𝜌𝑑  and 𝜌𝑎𝑖𝜃 will generate d subgroups that contain reflections; therefore, the 

number of subgroups of D(n) that contain reflections is equal to the sum of the divisors of n. 

Since 𝜏(𝑛) represents the subgroups only containing rotations and 𝜍(𝑛) represents the 

subgroups containing reflections, then 𝑆𝑛 = 𝜏 𝑛 + 𝜍(𝑛) for any given n.  

Conjugacy Classes in Sn 

 Let G be any group. Two elements α and σ of G are said to be conjugate if α = γσγ-1 for some γ∈ G 

(Samaila, 2010). In other words, if σ, γ ∈ G, we define the conjugate of σ by γ or σ by γ -1 to be the element 

γσγ-1 or γ -1σγ respectively. Proposition 1: Let G be a group, and define the relation ∼ on G by α∼σ if α and σ 

are conjugate in G. Then ∼ is an equivalence relation (Bianchi, 2001). Proof: All we need to do is to show that 

∼ satisfies the three defining properties of an equivalence relation. 1. For α∈ G, α∼α since eαe -1 = α, which 

shows that ∼ is reflexive. 2. Suppose α∼σ, then for some γ∈ G, α=γσγ-1. Now, γ -1αγ = γ -1(γσγ-1)γ = (γ -

1γ)σ(γ -1γ) = eσe = σ i.e. if we conjugate α by γ -1, then we have σ∼α. Thus, ∼ is symmetric. 3. Let α, β, σ∈ G 

such that α∼β and β∼σ. Then α = γβγ-1 and β = µσµ-1 for some γ, µ∈ G. Now α = γ(µσµ-1)γ -1 = (γµ)σ(µ -1γ -

1) = (γµ)σ(γµ) -1. Hence, conjugating σ by (γµ) to get α means that α∼σ. i.e. ∼ is transitive. Hence, ∼ is an 

equivalence relation.∗  Since the relation ∼ is an equivalence relation on G, its equivalence classes partition G. 

The equivalence classes under this relation are called the conjugacy classes of G. Hence the conjugacy class of 

α∈ G is given by [α] = {γαγ-1|γ∈ G}. 

Representation of the Conjugacy Classes in Dn 

 Considering the definition of Conjugacy class explained above, if we represent the elements of Dn as 

{I, α, α 2 , …, α n-1 ,α i β; 0 ≤ i ≤ n-1} where each element is to represent a conjugacy class, then we shall have 

the size of the conjugacy classes. Again, there are (n-1)/2 pairs of conjugate rotations when n is odd (exclude the 

identity) and (n-2)/2 pairs of conjugate rotations for even n (exclude the identity and α n/2 ). In both cases, 

whether n is even or odd, the sum of the sizes of the conjugacy classes in Dn equals 2n. Reprt. I α α 2 … α (n-

1)/2 β Size 1 2 2 … 2 n Table 1: Conjugacy class representation in Dn for n odd Reprt. I α α 2 … α (n-2)/2 α n/2 

β αβ Size 1 2 2 … 2 1 n/2 n/2 Table 2: Conjugacy class representation in Dn for n even Obviously, in table 1 

and 2 of the representations of the conjugacy classes of Dn above, the sum of the sizes of the conjugacy classes 

amounted to 2n. 

 

Center of Dn 

 Recall that the centralizer of the subgroup H in a group Dn is the set of elements of Dn which 

commute with every elements of H, namely C(H)Dn = {g∈ Dn | αg = gα for all α ∈  H}. Hence, the centralizer 

of the subgroup H of the group Dn is the subgroup H itself if H represent the set of all rotations (including 

identity) in Dn. Again the center of the group Dn is the subgroup of Dn defined by Z(Dn) = {g∈ Dn : gh = hg ∀  
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h∈ Dn}. Thus, Z(Dn) = {I}, the trivial subgroup if n is odd and Z(Dn) = {I, α n/2 } if n is even. The center of 

any group G is a normal subgroup of e proposition are satisfied. 

The Class Equation of a Finite Group 

 Given any finite group G, let Z(G) be the center of G. Then G∩{Z(G)}c is a disjoint union of 

conjugacy classes. Let m be the number of conjugacy classes contained in G∩{Z(G)}c , and let i1, i2, …, im be 

the number of elements in these conjugacy classes. Then ij > 1 for all j, since the centre Z(G) of G is the 

subgroup of G consisting of those elements of G whose conjugacy class contains just one element, see tables 1 

and 2 above. Now the group G is the disjoint union of its Conjugacy classes, and therefore, |G| = |Z(G)| + i1 + i2 

+ … + im 

Summary 

The group structures of Sn and Dn were examined and their Conjugacy classes. It was found that all 

conjugate elements in Sn have the same cycle type, i.e. if α,σ∈ Sn such that α is conjugate to σ, then l(α) = l(σ). 

While in Dn, its elements are partitioned in to two disjoint sets (one consists of rotations and the other for the 

reflections) of the same order (Samaila, 2010). Each rotation is conjugate to its inverse, noting that for the 

identity element I and the rotation α n/2 (for n-even), each is conjugate to itself. For n-odd, the reflection β is 

conjugate to every other reflections while for n- even, β is conjugate to half of the reflections while the 

reflection αβ is conjugate to the remaining half of the reflections. We have also seen that the relation 

“Conjugacy” is an equivalence relation. The center of Dn is found to be the trivial subgroup {I} when n is odd 

and {I, α n/2 } when n is even. And finally, two class equations for Dn were derived.  
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