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ABSTRACT 

The current advances in microelectronics and correspondences have prompted the improvement of huge scale 

IoT networks, where gigantic tactile data is produced and should be handled. To help ongoing handling for vast 

scale IoT, conveying edge servers with capacity and computational ability is a promising methodology. In this 

paper, we precisely break down the affecting elements and key difficulties for edge node organization. We at 

that point propose a novel three-stage organization approach which thinks about both activity assorted variety 

and the remote decent variety of IoT. The proposed work goes for giving ongoing handling administration to the 

IoT system and diminishing the required number of edge nodes. We led broad reenactment tries, the outcomes 

demonstrate that contrasted with the current works that neglected the two sorts of decent varieties, the proposed 

work incredibly lessens the quantity of edge nodes and enhances the throughput amongst IoT and edge nodes. 
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I. INTRODUCTION 

 

The recent advances in low-power wireless communications and computing technologies have enabled the 

largescale implementation of Internet of Things (IoT) systems [1], where massive sensors, micro-controllers and 

transceivers are embedded to the facilities of buildings, vehicles, wearable items and wild areas [2], [3], [4]. The 

IoT aims at making the Internet even more immersive and pervasive, providing interactive cyber-physical access 

and control services [5], [6]. Based on the IoT infrastructure, various large-scale real-time applications emerge, 

which makes the real-time processing a fundamental and critical service for IoT [7], [8]. For example, the smart 

building system [4] consists various types of IoT sensory nodes including HD cameras, wearable sensors, 

localization anchor sensors, gym equipment sensors, etc. Those sensors need to keep collecting the sensory data 

continuously and provide real-time response to the upper level applications. For example, the health monitoring 

system needs to collect various health data from the wearable sensors from users and alarm when abnormal 

phenomenon is detected.Figure 1 shows the edge architecture for IoT systems. Multiple edge computing servers 

are deployed to cover part of the IoT nodes. The computational tasks and sensory data from the IoT nodes are 

sent to the edge nodes (ENs) for processing. The results are then returned to the IoT nodes or transmitted to the 

cloud for big data analytics [10]. 
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Deployment of the edge nodes is a fundamental problem for the above architecture. Different from the existing 

works on sink deployment in multi-sink sensor networks, the deployment of edge nodes have several distinct 

challenges. First, compared to traditional sensor network nodes, IoT nodes are more diverse and have largely 

different traffic demands. For example, the video cameras produce much more data than the equipment 

maintenance sensor nodes. Second, unlike the mobile edge computing where WiFi/Cellular communications are 

utilized, IoT nodes often employ the low-power radios [11], [12] and are more prone to the wireless 

interference. Considering the edge servers are responsible for collecting data as well as disseminating data (e.g., 

for software update or computational feedback), the wireless interference can significantly affect the EN 

deployment. 

The main contribution of this paper is summarized as follows. 

1) We propose a discretization scheme to generate candidate positions, where traffic diversity is considered 

and the demands/resources of IoT nodes are normalized. 

2) We propose a novel utility metric to evaluate the candidate positions, where the wireless diversity is 

considered. 

3) Based on the above schemes, we propose a deployment algorithm which improves the IoT-Edge throughput 

and reduces the number of edge nodes. 

 

II.RELATEDWORK 

  A. Preliminaries and System model 

Our aim is to deploy a number of edge nodes to a large-scale IoT network, where diverse IoT sensor nodes are 

in an area possibly with pedestrians and wireless interference. Figure 1 shows a typical IoT network in an 

airport, which consists a number of HD camera sensors with high traffic demands and a number of ordinary 

sensors with low traffic demands. The ordinary sensors are used for building monitoring, indoor navigation, 

equipment monitoring, etc. Although those IoT sensor nodes generates large amount of data, they usually have 

very limited computational resources for real-time data processing [7]. To support real-time data processing for 

the large-scale IoT network, a promising alternative is to deploy a number of edge nodes hierarchically with the 

IoT network, which are connected to the IoT nodes and processes the IoT data in real time. All IoT nodes then 

send the sensory data to the connected edge servers for data processing. 

Compared to the traditional large-scale sensor network, the large-scale IoT network has two main differences. 

1) First, the IoT networks are heterogeneous rather than homogeneous, which consists much more diverse 

IoT nodes. For example shown in the figure, the camera sensors and equipment sensors have largely different 

demands on data traffic and data processing. 

2) Second, the IoT networks are often deployed in indoor environments rather than unmanned areas. 

Considering WiFi has been pervasively deployed for wireless access, the co-existence problem of edge nodes 

and the environmental wireless networks also needs to be considered. Specifically, as low power radios are 

often employed in the IoT nodes, they can be easily affected by WiFi communications, Bluetooth 

communiations, etc . 
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Our goal now is to deploy a number of edge nodes to the IoT network to cover all the IoT nodes. The problem 

of minimizing the number of edge nodes is equivalent to the problem of Knapsack problem , which is NP 

Complete. Therefore in this paper, we design a heuristic to reduce the number of edge nodes and provide high-

throughput data collection/dissemination service for real-time data processing in the IoT networks. 

 

B. Diversity Aware Deployment of the Edge Servers 

i) Challenges: 

There are two challenges to deploy edge nodes for realtime data processing in large-scale IoT – Traffic diversity 

and wireless diversity. 

1) Traffic diversity. The IoT nodes are diverse in data types and traffic demands. Different types of data have 

different processing requirements and will require different amount of computational resources. 

Considering the edge nodes are often powerful, in this paper, we mainly consider the diversity of traffic 

demands. Different amount of traffic demands will directly affect the deployment of edge nodes in two 

ways. First, the edge nodes are targeted to receive data from the IoT nodes. Intuitively, the edge nodes 

should be deployed nearer to the IoT nodes with more traffic demands. Second, the traffic demands may 

not be consistent with the node density because different nodes have different demands. The two factors 

need to be jointly considered in the deployment process. 

2) Wireless diversity. For wireless diversity we mainly consider link quality and link correlation. For many 

large-scale IoT systems, especially for those deployed in indoor environments, the WiFi networks, 

Bluetooth communications, even microwave ovens can have large impact on the transmission quality 

between the edge nodes and the IoT nodes as they typically use lowpower radios (e.g., ZigBee). 

Considering that edge nodes are used to collect sensory data and disseminate remote commands and 

maintenance instructions, both inbound and outbound performance can be largely impacted by the 

interference. Therefore, the link quality/correlation distribution and the impact on the performance of both 

collection/dissemination should also be considered in the deployment process. 

 

ii) Overview: 

To address the above challenges and deploy the edge nodes effectively, we incorporate the two kinds of 

diversities into the deployment process and propose a three-phase deployment approach. Figure 2 shows the 

overview of the proposed approach. 

1) Discretization. Before determining the positions for deploying edge nodes, we first discretize the whole 

IoT network area into many small sections and the centroid of each section is a candidate position. In the 

discretization, we combine both wireless transmissions and the data traffic demands to define “effective” 

transmission levels, with which all nodes’ levels are normalized and the traffic diversity is incorporated. 

The details are described in Section III-C. 

2) A utility metric. Next, we propose a comprehensive metric to evaluate the impact of each candidate 

position. The utility metric calculates the expected performance gain of the candidate position regarding 
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the expected number of transmissions required for both data collection and message dissemination. 

Wireless diversity including link quality and link correlation among multiple links are considered in the 

metric. The detailed design of the metric is described in Section III-D. 

3) The deployment algorithm. Based on the proposed utility metric, we further devise a heuristic to select the 

best candidate positions for deploying the edge nodes. The input is the traffic demands and wireless 

 

iii)Deployment algorithm: 

Based on the metric ρ proposed , we can sort all the candidate positions. The problem is NP complete. We then 

propose a heuristic solution by selecting the candidate positions from the position with the best ρ. When a 

candidate position is selected, the IoT nodes within the m-th utility level are included as its subscribing 

receivers. Then we exclude all the covered subscribing receivers, update the ρ values for all candidate positions 

(expected the chosen positions) and select the position with the highest ρ for deploying the next edge node. The 

above process continues until all IoT nodes are covered by the edge nodes. The detailed deployment algorithm 

is described in Alg. 1. 

Algorithm 1 The deployment algorithm Input: 

1) The set of all candidate positions, Pc; 

2) The set of all IoT nodes, N; 

3) The link quality/correlation for all positions which is used forcalculating the ρ metric for the candidate 

positions; 

 

Output: The selected positions for edge node deployment Ps while There exists n ∈ N that is not covered by any 

pi ∈ Pc. positions in each iteration. With a larger τ, the algorithm runs fast but the selected positions may have 

worse utilities; With a smaller τ, the algorithm runs slow but the selected positions have better utilities. 

 

III. INDENTATIONS AND EQUATIONS 

A. Evaluation 

i) Experimental Settings: 

We tune the following parameters to see in which cases the proposed work performs better or worse. 

1) The fraction of high-demand IoT nodes. The highdemand IoT nodes generate five times traffic of the 

ordinary IoT nodes. We tune the fraction of the highdemand nodes and see the performance gain achieved by 

the proposed work. 

2) The fraction of dissemination tasks. Different IoT networks may have different designing goals, leading to 

different fractions of dissemination tasks . This fraction has impact on the calculation of ρ. 

     The wireless interference. We change the number of interfering wireless APs and compare the performance 

gains. The interference impacts the wireless diversities, which further impacts the selection of candidate 

positions. 
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ii) Simulation Results: 

We can see that 1) compared to the existing work based solely on wireless communications, the proposed work 

always reduces the number of edge nodes. The reason is that although link quality is important, the throughput 

may not be good as high-demand nodes may be assigned to poorquality links. 2) The reduction increases and 

then decreases, which means our work better suits for the case with more diverse traffic demands from IoT 

nodes. The reason is that we explicitly consider the traffic diversity in the candidate positions. As a result, when 

the IoT nodes are more diverse, we have more room for optimization. 

 

Figure 5 depicts the performance gain for both collection tasks and dissemination tasks with varying fraction of 

the dissemination tasks. We set that the IoT network contains 60% high-demand nodes. Recall that the 

dissemination tasks are used for network maintenance or periodic network update. From the results we can see 

that 1) the performance for data collection is consistently improved. The reason is two-fold. First, wireless link 

diversity is considered in the proposed work, which reduces the expected packet losses. Second, although the 

fraction of collection tasks deceases, for each specific collection task, the link diversity is still considered and 

thus the throughput is improved; 2) the performance for data dissemination significantly increases. This is 

because the existing works overlook the dissemination task demands. When the fraction of the dissemination 

tasks increase, the throughput gain increases accordingly. It is also worth noting that in most IoT networks, 

dissemination is not the dominating 

 

Figure 6 shows the throughput gains for collection and dissemination under different number of wireless APs 

(WiFi). Similar to [25], the impact of WiFi interference is introduced in the simulation by deliberately failing 

some packet transmissions. The packet losses generated at the sender side will be the correlated packet losses 

and the packet losses generated at the receiver side will be the independent packet losses. According to the 

studies in [25], WiFi interference is a dominating reason for correlated packet losses, as a result the packet loss 

link correlation becomes stronger when WiFi interference becomes stronger. From the results it can be inferred 

that as the interference becomes stronger, the throughput gain of dissemination becomes larger and the 

throughput gain of collection remains similar. From the calculation process in Section III-D we can see that link 

correlation mainly impacts the performance of data dissemination. When link correlation becomes stronger with 

the interference, there are more optimization space for dissemination. 

 

Figure 7 depicts the reduction of edge nodes with varying number of interfering wireless APs. Different from 

the experiment in Figure 4, the fraction of high-demand IoT nodes is fixed and the number of interfering nodes 

is varying. We set 40% nodes with high traffic demand and 20% dissemination tasks. It can be inferred that 1) 

the reduction increases as the interference becomes stronger. From the above analysis on dissemination, we can 

infer that the increments come from the portion of nodes that have 20% dissemination tasks. In order to meet the 

dissemination throughput threshold, more edge nodes will be required for the work without considering 

dissemination performance. 2) Compared to the results in Figure 4, the reduction changes are much smaller. 
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Therefore, we can conclude that the number of edge nodes is mainly determined by the traffic diversity. The 

impact of interference on reducing the edge nodes is limited. 

 

B. Related Work 

The combination of mobile edge servers and IoT as well as the corresponding benefits are discussed . Our work 

differs from the scenario described in the following ways. First, we consider a large-scale and more practical 

IoT network, where different IoT nodes are with more diverse demands. Second, we focus on the deployment 

problem of edge nodes for IoT network while the authors in  consider a general idea of combining mobile edge 

computing and IoT applications. 

Although there are few existing works on deploying edge servers for large-scale IoT network, the problem is 

closely related to the powerful node deployment problem in largescale sensor networks, where the powerful 

nodes can be either relay nodes or sink nodes . Next, we mainly introduce and discuss the literature for 

deploying relay nodes or multiple sink nodes in largescale sensor networks. Bredin et al.  studied the relay node 

deployment problem which should meet a survivability requirement. Cheng et al.  considers the connectivity 

constraint in the relay node deployment. Similar to our work, each IoT node is required to be connected to a 

relay node. Misra et al.  additionally consider limiting the candidate positions and propose to select candidate 

positions before deployment. Our work differs from  in that we incorporate the traffic diversity (traffic demand 

distribution) in the candidate position generation process, therefore providing more reasonable and efficient 

candidate positions. Nikolov et al.  aim at deploying a given number of relays to the network to maximize the 

communication gains. Bagaa et al. is a recent work that achieves optimal placement of the relays over limited 

candidate positions. Different from these works, IoT networks contains more diverse nodes and experience more 

wireless interference. Therefore in our work, we jointly consider the traffic diversity and wireless diversity 

(especially the link correlation characteristic). As a result, the proposed work is more suitable for large-scale 

heterogeneous IoT networks and can achieve better throughput gains.Some works have specific requirements 

according to the target scenarios. Wu et al.consider the relay node deployment with pipeline inspection. Ma et 

al. additionally consider the delay constraint for the deployment. Our work is orthogonal to these works, i.e., the 

above constraints can be easily added into our scheme. Besides, the traffic diversity and link correlation are 

overlooked in these works, which may lead to performance degradation under strong interference scenarios. 

 

IV.FIGURES AND TABLES 
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Fig. 1. An illustrative example for the system model. There are various types of IoT sensor nodes and 

wireless access points (AP) deployed in the target area. The edge nodes needs to cover the IoT nodes and 

try avoiding the interference from the wireless APs. 

 

  

 

 

 

 

                                                                       

 

Fig. 2. Overview of the proposed work 

 

 

Fig. 3. The discretization approach with different leveling schemes. (a) shows the case that uses 

the transmission-rate levels for   discretization; (b) shows the normalized levels which consider 

the data traffic demands from different IoT nodes. 
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Percentage of the high-demand IoT nodes (%) 

Fig. 4. The reduction on the number of edge nodes with different high-demand IoT nodes. 

 

 

Fig. 5. The throughput gains with varying fractions of dissemination tasks. 

                                               

Fig. 6. The throughput gains with varying interfering wireless APs. 
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Number of wireless APs 

Fig. 7. The reduction on the number of edge nodes with varying interfering wireless APs 

 

 

V. CONCULSION 

In this paper, we propose to deploy edge nodes for realtime data processing in large-scale IoT networks. We 

identified the key challenges for edge node deployment – the traffic diversity and the wireless diversity. We 

then propose a novel three-phase deployment approach considering both kinds of diversities. The proposed work 

aims at minimizing the number of edge nodes and providing real-time processing service for the IoT network. 

We have conducted simulation experiments and the results show that compared to the existing works that 

overlooked the two kinds of diversities, the proposed work greatly reduces the number of edge nodes and 

improves the throughput for both data collection and dissemination. 
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