International Journal of Advance Research in Science and Engineering 4?
Volume No.07, Special Issue No.04, March 2018 IJARSE
www.ijarse.com ISSN: 2319-8354

On the regions containing zeros and zero free
regions of a Polynomial

Dr. Mushtag Ahmad Shah

Department of Mathematics Government College of Engineering and Technology

Safapora Ganderbal Kashmir, India

Abstract
If P(z)= Z;l:o a;jz’,a; > aj_1,a0 > 0,j =1,2,--- ,n is a polynomial
of degree n, then according to a classical result of Enestrom-Kakeya, all
the zeros of P(z) lie in |z| < 1. Joyal (et al) [9] extended Theorem A to
the polynomials whose coefficients are monotonic but not necessarily non-
negative.In this paper, I will prove some extensions and generalizations of
this result by relaxring the hypothesis.
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1.INTRODUCTION AND STATEMENTS OF RESULTS

Let P(z) = 2'7':0 ajzj be a polynomial of degree n, then concerning the
distribution of zeros of P(2), Enestrom and Kakeya [10, 11] proved the following
interesting result.

Theorem A. Let P(z) = Z?:o a;z? be a polynomial of degree n such that

(1) Ap > Gp_1 > -+ > ay; > ap >0,

then P(z) has all its zeros in |z| < 1.

In the literature [1-11], there exist several extensions and generalizations of
this Theorem. Joyal et al [9] extended Theorem A to the polynomials whose
coefficients are monotonic but not necessarily non-negative. In fact they proved
the following result.

Theorem B. Let P(z) = Z?:o a;2? be a polynomial of degree n such that

an 2an—l 2 201 2(10,
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then P(z) has all its zeros in the disk

1
2] £ = (lan| — a0 + |ac]) -
|an|
In this paper, I will prove some generalizations and extensions of Theorem
B and hence of the Theorem A i,e Enestrom-Kakeya Theorem. In this direction

I first present the following interesting result in which we relax the hypothesis
and hence is a generalization of Theorem B. In fact, I prove the following:
Theorem 1. Let P(z) = @;2" +a; 12" ++<vt-ap2f +a,_ 12271+ <ot

a1z + ag be a polynomial of degree n satisfying ap > ap_1 > --- > ay > ag,p =
n

0,1,--- ,nand M, = ) |a; —a;_|, then all the zeros of P(z) lie in the disk
Jj=p+1

My, + ap — ao + |ao)
lan|

2| <

Remark 1. For p = n, Theorem 1 reduces to Theorem B.
Applying Theorem 1 to the polynomial P(tz), we get the following result:
Corollary 1. Let P(2) = ap2™ +apn_12" '+ +ap2P +ap 2P 1 4+ +
a,z + ag be a polynomial of degree n such that for anyt > 0,

tPa, >t*P " lap_y > --- >ta; > ap,p=0,1,---,n

then all the zeros of P(z) lie in the disk

n
2] < Z |ta; = aj_1| tPa, —ag+ |ao|
= tn—]+1|an| t"|an|

Jj=p+1

The following result follows from Corollary 1 by taking p = 0.
Corollary 2. Let P(z) = anz™ + an_12""' +---+ a1z + ag be a polynomial of
degree n, then for any t > 0 all the zeros of P(z) lie in the disk

n
lta; —a; |
2| < Z tn—i+1|a,|
j=0
We also prove the following result which gives the lower bound for the moduli

of zeros of a polynomial. In other words it provides the zero free region for
polynomials.
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Theorem 2. Let P(2) = ap2" +ap,_ 12" '+ +ap2P +a, 12771+ +

a1z + ag be a polynomial of degree n satisfying a, > a,_y > --- > ay = ag,p =
n
0,1,--- ,nand M, = > |a; —a;_1|, then P(z) does not vanish in
J=p+1

o |ao|
z| < Min< 1,
& { [t |-V -y — iy

For p = n, Theorem 2 reduces to the following result:
Corollary 3. Let P(z) = a,2™ + An_ 12" 4+---4+a12+ ag be a polynomial of
degree n satisfying,a, > ap_1 > --- > ay; > ag then P(2) does not vanish in

The bound is attained by the polynomial P(z) = 2" +2" ' +... + 2+ 1.

Next we prove the following more general result which is also a generalization
of Theorem B.

Theorem 3. Let P(2) = ap2™ +a,_ 12" '+~ +ap2P +---+a12+ap be a
polynomial of degree n satisfying

ap > ap_y > -+ 2> ap, 0<p<n
and
n
Mazx a; —a;_1)2" 7| <M,
lz]=1 _Z ( J J 1)

then all the zeros of P(z) lie in

|2| £ mazx (1, lag| — ao + a, +M) -

|an|

2763 |Page




International Journal of Advance Research in Science and Engineering
Volume No.07, Special Issue No.04, March 2018 IJARSE
www.iiarse_com ISSN: 2319-8354

n

Remark 2. Let Max (a; —aj_1)27| is attained at 2 = €', then,

|z]=1 j=p+1
n
AI = E (a] = aj_l)em‘
Jj=p+1

n
€ Z laj —aj—1| =M, 0<p<n,
Jj=p+1

where M, is defined as in Theorem 1. Thus
M<M, 0<p<n.

From this, we conclude that Theorem 3 is a refinement of Theorem 1.

The following result is an immediate consequence of the Theorem 3.
Corollary 4. Let P(z) = ap2™ +a,_12" ' +---+ a2 + ag be a polynomial of
degree n, then all the zeros of P(z) lie in

where

1 Proofs of the Theorems
Proof of Theorem 1. Consider the polynomial

F(2)=(1—2)P(=2)
=1 —2)(an2" + apn_12""' + -+ a1z +ao)
I B B T 7, et I
=iy, 2 = svi—ggr
n—1

= _anzn+1 -+ (a'n —= an-—-l)zn -+ (an-—-l —= an-—-2)z

+ -+ (a1 —ao)z + ao.
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This gives

|F(2)| > Ianz”“| — {Ian — an_lllzr‘ + |an._1 — an_2||z|"’1

maliie lap+1 _‘1p||2|p+l s 7 |al - ao||2| i |ao|}

Q1 = G
=]z|"{]an||z|— (Ian_an—lH'| - l|~| el
~
a —a — a
+_._+| p+1 p|+_._+|a1 a0|+| ol ) |
|z|n—p—l |Z|n—l lz|n

1
—— < 1,0 € j € n, then we have
|z|"~3

Now, let |2| > 1, so that

|F(2)] > |2|"{|an||2| = (Ian — @n_1| + |an—1 — an_2|
+- o0+ |apyr —ap| + -+ |ay —‘1-0|+|00|)}

= lzl"{lanllzl - (Ian —Qn_1| + |@n—1 —Ap_2|+---
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+|ap+1 —apl +ap—Qp_1+---+0a1 —ap+ Iao|>}
n
= Izln{lanIIZI & ( > laj—aj_a|+ap—ao+ Iao|> }
Jj=p+1
= IZI"{IanIIZI - (Mp tap —do+ Ia-ol) }
>0, if|z||lan| > (IMP +ap, —ap+ |a0|),
(]\[p +ap—ap+ |a0|)
ie if |z| >
|an|
n
where M, = )’ |aj - aj_1|. Thus all the zeros of F'(2) whose modulus is
J=p+1

greater than 1 lie in the disk

1
2] < m—l(ﬂ/lp +ap —ap + |a0|).

But those zeros of F'(2) whose modulus is less than or equal to 1 already satisfy
the above inequality and all the zeros of P(z) are also the zeros of F(2). Hence
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it follows that all the zeros of P(z) lie in the disk

|2| <

|a I (ﬂfp — ap — ap -+ |a0|) ;
n

This completes the proof of Theorem 1.
Proof of Theorem 2. Consider the reciprocal polynomial

R(z) =2"P(1/2) = ap2" +a12" ' + -+ ap2" P+ -+ +an.

Let
S(z) =(1—2)R(2)
= —gge™ T - (ag—ay )2 £
+ (@p — Gp4+1)2™ P+ -+ (Gr=1 — Qp)2 + ayp.
This gives

1S(2)| > |a0||z|"+‘—{ lao — a1||2|™ + -+ - + |ap — apsa||2|" P

+ -4 |an—1 “an||z| + |an|}

Gy — @
. Iz|n{|a0||—’~’| = (Iao —ay|+---+ |P—P+1[

|2[P

|an—1 —an| | |an|
S T e a el N €

——ljj— < 1,0 £ j € n, then we have

2|

Now, let |z| > 1, so that
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|5(2)] 2 Izl"{laollzl = (Iao —a| 4+t ap —appa| 4

i Ian—l i anl 3 Ian|> }

. |z|"{|a0||z| - ('al —ag| ++++ +|apy1 —ap| + lap —ap_;

+ .-+ |a-n _an—ll g Ian')}

= Izl"{laoIIZI = (ap — lao| +lan| + Y la; -aml)}

j=p+1

= IZI"{Iao|IZI - (ap — lao| + an| + Mp> }

21> 2 ap = ool + lanl + 1, |
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n
where M, = 3 |a; —a;j_1|. Thus all the zeros of S(z) whose modulus is

Jj=p+1
greater than 1 lie in

2] < —
lao|

Hence all the zeros of S(z) and hence of R(2) lie in

1
|z] < ]lfa:v{L la—OT(ap — |ao| + |lan| + A"Ip) }

Therefore all the zeros of P(z) lie in

; |a'o|
2| > Ming 1, \
2] 2 { a, — |ao| + |an| + M,

: |ao|
z| > Ming 1, — 5.
o2 { ap = ool + lan] + 77,

Thus the polynomial P(z) does not vanish in

|2| < Min (1, 20| ) ]

ap — |a0| T Ianl + AIP

{ap — |ao| + |a,| + AIP}.

This completes the proof of Theorem 2.
Proof of Theorem 3. Consider the polynomial
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F

XTI

z)

(1-2)P(2)
(1-2)(anz" +an12" '+ +a1z + ao)
+1

2"+t az+ag — 02" — 2" — - —apz
+(ap —ap-1)2P + -+ + (a2 — @1)2® + (@1 — a0)z + ag

where
R(2) = (an — @p_1)2" + -+ (apy1 — ap)2P™ + (a, — ap_1)2P
+ -+ (a1 — ao)z + ao.
Let
R*(z) =2"R(1/2)

=ao2" + (a1 — ap)2" " + -+ (ap — ap_1)2" P

+(aps1 —ap)2" P 4+ (@ — ana).
Therefore

|R*(Z)| < |a0z" u. (al — ao)zn—l sl (ap _o ap_l)zn—p|

+[(@pp1 —@p)2" P 4 (an — apy)|
n
< laoll2[™ + |(@1 — ao)| |2" ™ + -+ + [(ap — ap-1)| 2" P +| D (a5 —a5-1)2"7]
Jj=p+1
<lag| +ap —ap+ M, for |z|=1,
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where M is defined as in the statement of the Theorem. Hence by maximum
modulus principle, it follows that

|R*(2)| < |ao| +ap —ao+ M, for |z| <1.
Therefore
|R(2)| < |2|*(Jao| + ap — a0 + M), for |2| > 1.
This gives for |z| > 1,
FE) 2 [ons™ | — |RE)
> |an2"| — 2™(lao| + ap — ag + M)

- M
=|an||z|"{|z|—|a0|+ap ag + 1 }

jan|

=0 B
2] > |ao| + ap — ap + M

lan]
Thus all zeros of F(2) whose modulus is greater than 1 lie in the disk

lao| +ap —ao + M

|an|

Therefore all zeros of F'(z) lie in the disk

2] <

— M
|z|§.Ma:c{1,|a0|+ap dor }

|an|

But all the zeros of P(z) are also the zeros of F(2). Hence it follows that all
the zeros of P(z) lie in the disk

|z] < J\«’Iaa:{l, [20] + a —ao—i-thI}‘

|an|

This completes the proof of Theorem 3.
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