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ABSTRACT 

In this paper, the authors  investigate  the  initial coefficient bounds  for some  new subclasses  of  analytic  

functions  related to Sigmoid function. Also the relevant connections to Fekete-Szegö inequality and Hankel 

determinant for these classes are briefly discussed. Our results serve as a new generalization in this direction. 
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I INTRODUCTION AND PRELIMINARIES 

The theory of special functions is significantly important to scientists and engineers. Though not with any specific 

definition but its applications extend to physics, computer etc. Recently, the theory of special functions has been 

overshadowed by other fields like real analysis, functional analysis, algebra, topology and differential equations. 

 There are various special functions but we shall concern with one of the activation function known as sigmoid 

function or simple logistic function. Activation function is an information process that is inspired by the biological 

nervous system such as brain processes information. It comprises of large number of highly interconnected 

processing element (neurons) working together to solve  a specific task. The function works in similar way the brain 

does, it learns by examples and cannot be programmed to solve a specific task. 

The sigmoid function of the form  

                                                                                   
ze

zh



1

1
                                                                       (1.1) 

is differentiable and has the following properties: 

 It outputs real numbers between 0 and 1. 

 It maps a very large input domain to a small range of outputs. 

 It never loses information because it is a one-to-one function. 

 It increases monotonically. 
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The four properties above shows that sigmoid function is very useful in geometric function theory. 

     Let  A denote the class of functions of the form 

                                                                           ,
2







n

n

n zazzf                                                                     (1.2) 

which are analytic in the open unit disc  : 1E z z  . 

     Let  U  be the class of bounded functions  

                                                                         ,
1







n

n

n zczw                                                                     (1.3)                                      

which are regular in the unit disc and satisfying the conditions 

                                                                        (0) 0w    and    1w z  in  E. 

      For functions f  and g analytic  in E, we say that f is subordinate to g , denoted by f g ,  if there exists a 

Schwarz function   Uzw  ,  w z analytic in  E with (0) 0w  and   1w z  in  E, such 

that     f z g w z . It follows from Schwarz lemma that         00 gfEzzgzf   

and    EgEf   (see detail in [1]). 

      Fekete and Szegö in 1933 gave the sharp bound for the functional 
2

23 aa   for the functions in the class S of 

univalent functions when   is real. The determination of the sharp bounds for the functional 
2

23 aa   is known 

as the Fekete-Szegö problem and this has been investigated by several authors for different subclasses of univalent 

functions. 

    In 1976, Noonan and Thomas [2] stated  the qth  Hankel determinant for 1q  and 1n  as 
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    This determinant   has   also   been    considered   by   several   authors. Easily, one can observe that the Fekete 

and Szegö functional  is  12H .  

    For  2q  and 2n , 

 

 
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2 2
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H   is the second Hankel determinant. 
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    A function   Azf   is said to be in the class    Hzf   if 

                                                                   
  
 
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zf

zfz
zf   

    This class was introduced by Al-Amiri and Reade [3]. In particular   ,0 RH  the class of functions whose  

derivative has a positive real part and studied by Macgregor [4]. 

    A function   Azf   is said to be in the class    Rzf   if it satisfies  

                                                                      
 

  .01Re 







 zf

z

zf
  

    The class  R  was studied by Murugusundramurthi and Magesh [5] and in particular   .1 RR   

    Motivated  by  above defined classes, we  introduce  the  following  subclasses  of  analytic functions of complex 

order related to sigmoid functions. 

DEFINITION 1.1  For .Cb  Let  the  class    0, ,   nmbH  denote  the  subclass  of A  consisting  of 

functions of the form (1.2) and satisfying the following condition 
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 , 

for 10    and  znm,  is a simple logistic sigmoid activation function. 

DEFINITION  1.2  For .Cb  Let the class   0, ,   nmbR  denote the subclass of A consisting of  

functions of  the form (1.2) and satisfying the following condition 

                                                                           
 

  011
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1 







 zf

z

zf

b
 , 

for 10    and  znm,  is a simple logistic sigmoid activation function. 

    Recently, various authors as Abiodun [6], Murugusundramoorthy and Janani [7], Olatunji et al.[8] and Olatunji 

[9] have studied sigmoid function for different classes of analytic and univalent functions. 

    In the present work, we obtained few coefficient bounds for the classes  nmbH ,,  and  nmbR ,,  and the 

relevant connection with Fekete-Szegö theorems and Hankel determinant. 

    To prove our result we shall make use of the following lemmas: 

LEMMA 1.1 [10]  If a function Pp  is given by  

                                                    ,...1 2

21 Ezzpzpzp       
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then Nkpk  ,2  where P is the family of all functions analytic in E for which   10 p   and  

    .0Re Ezzp   

LEMMA 1.2 [11]  Let  h  be the sigmoid function defined in (1.1) and  
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then   1,  zPz  where  z   is a modified sigmoid function. 

LEMMA 1.3 [11]  Let   
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then   .2,  znm   

LEMMA 1.4 [11]  If   

                                                 ,1
1







n

n

nzcz  

where 
 

,
!2

1
1

n
c

n

n




  then Nncn  ,2  and the result is sharp for each n. 

II.        INITIAL COEFFICIENTS 

THEOREM  2.1   If    Azf   of the form (1.2) is belonging to  nmbH ,, , then 

                                                                 ,
4

2

b
a                                                                                 (2.1) 

                                                                           
 




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2
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                         and 
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a                                                      (2.3) 

Proof.   As   zf  nmbH ,, , therefore   
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where                               ...
20160

779

64

1

240

1
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1

2

1
1 7653

,  zzzzzznm
                          (2.5)                                                  

Using  (2.5), (2.4)  can be expanded as 

                ....
240

1
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1
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1
...8182144132 5333

2324
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232 







 zzzbzaaaazaaza              (2.6) 

Equating the coefficients of  
2, zz  and 

3z in (2.6),   we obtain   

                                                                  ,
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b
a                                                                               (2.7) 
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
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a                                                                       (2.8)            

                and  

                                                                
  
  
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4







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bbb
a                                                         (2.9) 

Results  (2.1),  (2.2) and  (2.3)  can  be  easily  obtained  from (2.7), (2.8) and (2.9) respectively. 

           For 1b  in  Theorem  2.1,  the following result is obvious: 

COROLLARY  2.1  If   zf  nmH ,,1  , then 
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4

1
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 





112
3a        and        

  
  

.
21196

146
4








a   

THEOREM 2.2   If    Azf   of the form (1.2) is belonging to  nmbR ,, , then 
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Proof.   Since   zf  nmbR ,, , therefore   
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where                          ...
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,  zzzzzznm
                               (2.14)                                                  

Using  (2.14) in (2.13), it yields 
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Equating the coefficients of  
2, zz  and 

3z in (2.15),   we obtain   

                                                                 
 

,
12

2



b

a                                                                    (2.16) 
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                          and  
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Results (2.10), (2.11) and (2.12) can be easily obtained from (2.16),(2.17) and (2.18) respectively. 

              For 1b  in  Theorem  2.2,  the following result is obvious: 

COROLLARY 2.2   If   zf  nmR ,,1  , then 

                                         
 

,
12

1
2


a             03 a         and        

 
.

3124

1
4


a  

 

 III.             FEKETE-SZEGӦ INEQUALITY 

THEOREM  3.1  If    Azf   of the form (1.2) is belonging to  nmbH ,, , then 
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Proof.  From (2.7) and (2.8), we have 
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Hence (3.1) can be easily obtained  from (3.2). 

THEOREM  3.2  If    Azf   of the form (1.2) is belonging to  nmbR ,, , then 
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Proof.  Using (2.16) and (2.17), we have 
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Hence (3.3) can be easily obtained from (3.4). 

  

IV.         SECOND HANKEL DETERMINANT 

THEOREM 4.1  If    Azf   of the form (1.2) is belonging to  nmbH ,, , then 
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Proof.  From (2.7), (2.8) and (2.9), we have 
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Hence (4.1) can be easily obtained from (4.2). 

THEOREM  4.2  If    Azf   of the form (1.2) is belonging to  nmbR ,, , then 
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Proof.  From (2.16), (2.17) and (2.18), we have 
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Hence (4.3) can be easily obtained from (4.4). 
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