Photon induced L₃ vacancy alignment study for Gd in the energy range 7.3-8.6 keV

Himani Bansal¹, M. K. Tiwari² and Raj Mittal^{*1}

¹Nuclear Science Laboratories, Department of Physics, Punjabi University, Patiala, India. ²X-ray Optics Section, Indus Synchrotron Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore, India.

ABSTRACT

The unequal distribution of vacancies in magnetic sub-states of a state with angular momentum j > 1/2 leads to vacancy alignment and results in anisotropic distribution of resulting X-rays. In decay of L vacancies, L_a and L_ℓ group of X rays originate only from the filling of L_3 vacancies. For isotropic distribution of X-rays, the crosssection ratio L_d/L_ℓ is independent of incident energy and simply becomes equal to the ratio of their radiative decay rates Fs. Thus, alignment of photon induced L_3 vacancies can be checked from energy dependence of L_d/L_ℓ cross-section ratios [1]. From our previous measurements on L X-rays for Gd at nine tuned photon energies from synchrotron Beamline-16, Indus-2, India [2] such that three energies each are at intervals 0.1 keV for selective excitations of L_1 , L_2 and L_3 ; L_2 and L_3 and only L_3 sub-shell, alignment studies have been made. Certainty and reliability of the measurements were checked from comparison of measured L_a and L_ℓ fluorescence cross-sections with theoretically calculated ones. The alignment parameter (A_2) and A_2' (Coster-Kronig corrected A_2) were evaluated and their variation with incident energies are interpreted in terms of peculiar electronic configuration of Gd and Coster-Kronig effects on L_3 vacancies.

Keywords: Coster-Kronig transitions, L X-ray intensity ratios, Selective sub-shell excitations, Synchrotron photons, X-ray fluorescence.

1. Introduction

 L_3 level with total angular momentum j=3/2 may have unequal vacancy population in magnetic sub states $m_j=3/2$ and 1/2 (Berezhko and Kabachnik [3], Berezhko et al., [4]) leading to vacancy alignment (A_2). Both L_ℓ and L_α group of L X-ray lines arise only from the feeding of L_3 vacancies, produced from direct ionization plus Coster-kronig (CK) transferred vacancies from L_1 and L_2 . Thus, the ratio L_α/L_ℓ is free from L_3 vacancy population and only depends upon the ratio of their fractional radiative decay rates $F_{3\alpha}/F_{3\ell}$. Radiative decay rates being after ionization effect are independent of incident photon energy and only depend upon atomic number Z. This makes L_α/L_ℓ ratio independent of incident photon energy. In our lab Bansal et al. [1] determined

alignment parameter from incident energy dependence of L_{α}/L_{ℓ} fluorescence cross-section ratios for elements, Z=66-83 at three tuned synchrotron photon energies for selective excitations of L sub-shells.

Recently, the measurements have been refined for selective L sub-shell excitations in the region Z=62-67 with nine E_{ij} monochromatic photon energies tuned such that three (*j*=1-3) energies at intervals of 0.1 keV in each of the three regions (*i*=1-3); > EL₁, >EL₂ & < EL₁ and >EL₃ & <EL₂ where EL_i are absorption edge energies of element. Excitation between L₃ and L₂ edges is free from CK effect while the other two comprise the CK effect due to shifting of L₂ and both L₂ and L₁ vacancies to L₃ sub-shell. Gd is central element in the rare-earth region, hence, in the present work the photon induced L X-ray measurements on Gd at nine energies were used to check the alignment of vacancies from incident energy dependence of L_α/L_ℓ cross-section ratios.

2. Experimental measurements

LXRF measurements for Gd were carried out at microfocus X-ray fluorescence beamline (BL-16) of Indus-2 synchrotron radiation facility in India in ambient air environment [2]. Self supporting target of Gd with thickness 0.0319 g/cm² was prepared from spec pure powder of Gd₂O₃ with styrol (C₈H₈) as binder following the method of Mann *et al.* [5]. Monochromatized photons in the energy range 7.3-8.6 keV were incident at 45° to the target surface for its excitation and emitted fluorescent L X-rays were measured at 90° to the incident photon beam with the SDD (Vortex, USA) photon detector having energy resolution ~138 eV at 5.959 keV (Mn K_a) X-rays placed at ~30 mm distance from the centre of the target. The recorded spectra of Gd at three incident energies 7.3(>EL₃), 8.1(>EL₂) and 8.4(>EL₁) keV are shown in Fig 1. With only L₃ excitation E_{31} (7.3 keV), X-ray groups L_{γ1}, L_{γ2} and most of L_{β1} originating from L₁ and L₂ are absent, at E_{21} (8.1 keV), only peaks from L₃ and L₂ excitations dominate and L_{γ2} originating mainly from L₁ is absent while at E_{11} (8.4 keV), all peaks ℓ , α , β 's and γ 's are present.

Counts under L_{ℓ} and L_{α} X-ray peaks ($N_{L \neq \alpha}$) for each spectrum were collected to evaluate experimental L-shell X-ray cross-section ratios $\sigma_{L \alpha}^* / \sigma_{L \ell}^*$ using relation (Bansal et al., 2017b).

$$\frac{\sigma_{Lg}^{*}(E_{ij})}{\sigma_{L\ell}^{*}(E_{ij})} = \frac{N_{L\alpha}(E_{ij})\beta_{L\ell}(E_{ij},e)\varepsilon_{L\ell}(e)}{N_{L\ell}(E_{ij})\beta_{L\alpha}(E_{ij},e)\varepsilon_{L\alpha}(e)}$$
(1)

where β 's are target self absorption correction factor at incident photon (E_{ij}) and emitted X-ray energies (e) and $\varepsilon_L(e)$ is extrinsic efficiency of detector for a group of X-rays depends upon the transmission of X-rays through the air column between target and detector, detector window, Au contact layer and Si dead layer and their absorption in the detector material calculated as Bansal et al. [6].

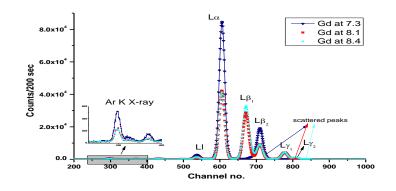


Fig. 1 L X-ray spectra of Gd recorded at 7.3, 8.1 and 8.4 keV incident energies.

3. Formulations for alignment evaluations

The X-ray fluorescence cross-sections for $L_{\underline{\ell}}(L_3-M_1)$ and $L_{\alpha}(L_3-M_{4.5})$, X-rays at incident photon energy E_{ij} for isotropic distribution of X-rays in terms of photo ionization cross-section for L_i sub-shell σ_{Li} , sub-shell fluorescence yield ω_{Li} , Coster-Kronig transition probabilities f_{ij} and radiative decay rates F's are given as

$$\sigma_{L\ell}^{*}(E_{ij}) = \left(\sigma_{L3}(E_{ij}) + \sigma_{L2}(E_{ij})f_{23} + \sigma_{L1}(E_{ij})\left(f_{13} + f_{12}f_{23}\right)\right)\omega_{L3}F_{3\ell} \quad (2)$$

$$\sigma_{L\alpha}^{*}(E_{ij}) = \left(\sigma_{L3}(E_{ij}) + \sigma_{L2}(E_{ij})f_{23} + \sigma_{L1}(E_{ij})\left(f_{13} + f_{12}f_{23}\right)\right)\omega_{L3}F_{3\alpha} \quad (3)$$

extion ratio, $\sigma_{L\alpha}^{*}(E_{ij}) - F_{3\alpha} \quad (4)$

and the cross-section ratio, $\frac{\sigma_{L\alpha}^*(E_{ij})}{\sigma_{L\ell}^*(E_{ij})} = \frac{F_{3\alpha}}{F_{3\ell}}$

For anisotropic emission of X-rays from aligned vacancies created by incoming polarized photon beam along z-axis in a x-z reaction plane, Barrea et al. [7] have given the X-ray distribution from L_3 state (*j*=3/2) as

$$W(\theta, \phi = 0^{\circ}) = \frac{W_0}{4\pi} \left[1 + \alpha_2 A_{20} [P_2(\cos\theta) - \frac{3}{2}\sin^2\theta] \right]$$
(5)

where W_0 is the total X-ray emission rate, θ is the angle between the X-ray and the incoming photon beam, ϕ is azimuthal angle and in the x-z reaction plane (ϕ =0), α_2 is a constant whose value depends upon the total angular momentum *j* of the initial and final states involved in the X-ray emission. Under dipole approximation, A_{20} is being taken as A_2 in the following text.

With α_2 (L_ℓ) = 0.5, α_2 ($L_{\alpha 1}$) = 0.1, α_2 ($L_{\alpha 2}$) = -0.4 [3], for L_ℓ and L_α (a combination of $L_{\alpha 1}$ and $L_{\alpha 2}$ lines),

the total intensities $W_{L\ell}$, W_{Lal} , W_{La2} proportional to respective XRF cross-sections, $\sigma_{L\ell}^* \sigma_{L\alpha 1}^* \sigma_{L\alpha 2}^*$ [8] give

$$\frac{\sigma_{L\alpha}^{*}}{\sigma_{L\ell}^{*}}(\theta,\phi=0) = \frac{W_{L\alpha1}(\theta,\phi=0) + W_{L\alpha2}(\theta,\phi=0)}{W_{L\ell}(\theta,\phi=0)}$$
$$= \frac{F_{3\alpha1}[1+0.1A_{2}(P_{2}\cos(\theta)-\frac{3}{2}\sin^{2}(\theta))] + F_{3\alpha2}[1-0.4A_{2}(P_{2}\cos(\theta)-\frac{3}{2}\sin^{2}(\theta))]}{F_{33}[1+0.5A_{2}(P_{2}\cos(\theta)-\frac{3}{2}\sin^{2}(\theta))]}$$
(6)

182 | Page

For no alignment of L₃ state vacancies, $A_2=0$ and expression (6) reduces to relation (4). At emission angles 90° the expression (6) becomes

$$\frac{\sigma_{L\alpha}^*}{\sigma_{L\ell}^*} \left(\theta = 90^{\circ}, \phi = 0 \right) = \frac{(F_{3\alpha 1} + F_{3\alpha 2})[1 - 0.2A_2 + A_2F_{3\alpha 2} / (F_{3\alpha 1} + F_{3\alpha 2})]}{F_{3\ell}[1 + 0.5A_2(-2)]}$$

Taking $F_{3\alpha 2}/F_{3\alpha 1}=1/9$ for hydrogen like wave functions, on solving one gets;

$$\frac{\sigma_{La}^{*}}{\sigma_{L\ell}^{*}} \left(\theta = 90^{\circ}, \phi = 0 \right) = \frac{(F_{3a1} + F_{3a2})[1 - 0.1A_{2}]}{F_{3\ell}[1 - A_{2}]}$$
(7)

The ratio $\sigma_{L\alpha}^*/\sigma_{Ll}^*$ is a function of the degree of alignment A_2 as well as of the radiative transition probabilities those are energy independent. Thus, the dependence of cross-section ratio on incident energy comes from the alignment of L_3 vacancies and leads to A_2 evaluations.

4. Results and discussion

Experimental cross-section ratios at different incident energies were evaluated using equation (1) and are listed in table 1 along with $F_{3\alpha}/F_{3\ell}$ ratio. The certainty and reliability of the measurements have already been judged from the comparison of measured L_{α} and L_{ℓ} fluorescence cross-sections with theoretically calculated ones [2].

Table 1: Evaluated experimental cross-section ratio along with $F_{3\alpha}/F_{3\ell}$, alignment parameter A_2 and Coster-Kronig corrected A_2 for Gd.

Incident energy (keV)		$\frac{I_{L\alpha}^{*}}{I_{L\ell}^{*}}(E_{ij})$ $(F_{3\alpha}/F_{3\ell}=24.152)$	A_2	A2'
E_{31}	7.3	20.687±1.45	- 0.190±0.013	-0.19±0.013
E_{32}	7.4	24.713±1.73	0.025±0.002	0.025±0.002
<i>E</i> ₃₃	7.5	24.838±1.74	0.031±0.002	0.031±0.002
E ₂₁	8.1	20.755±1.45	- 0.185±0.013	- 0.171±0.012
E ₂₂	8.2	23.706±1.66	- 0.021±0.001	- 0.019±0.001
E_{23}	8.3	25.307±1.77	0.05±0.004	0.046±0.003
E_{11}	8.4	27.904±1.95	0.147±0.010	0.123±0.009
E_{12}	8.5	31.679±2.22	0.257±0.018	0.215±0.015
E_{13}	8.6	24.976±1.75	0.037±0.003	0.030±0.002

The experimental values are with 7% uncertainties calculated from quadrature sum of the uncertainties in counts $N_{L\alpha/\ell}$ (1–4%), targets thickness (<2%) and target self absorption correction factor $\beta_{L\alpha/\ell}$ (<4%) [6]. The plot of experimental cross-section ratios versus energies along with $F_{3\alpha}/F_{3\ell}$ radiative transition probabilities ratios is shown in Fig. 2.

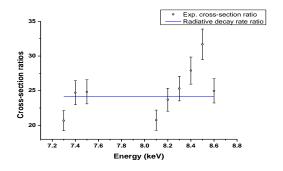


Fig. 2 Variation of experimental cross-section ratios versus energies along with $F_{3\alpha}/F_{3\ell}$ radiative transition probabilities ratios for Gd.

The cross-section ratios are fluctuating around constant ratio $F_{3\alpha}/F_{3\ell}$. Higher deviation at E_{1I} , E_{2I} and E_{3I} from $F_{3\alpha}/F_{3\ell}$ indicates the existence of vacancy alignment at near edge energies that almost decreases with energy with exception at energy and E_{32} . At energy between EL₃ and EL₂ edges, anisotropy is expected as only L₃ gets excited; between EL₂ and EL₁ edges and above EL₁ edge, the anisotropy is expected to be disturbed due to shifting of isotropic vacancies from ionized L₂ and L₁ sub-shells to L₃ sub-shell because of CK transitions along with direct ionization of L₃. Thus, by varying incident energies between L sub-shell thresholds, the effect of CK transitions is being checked. In the present experimental set-up, for dipole distribution of emitted L₃ fluorescent X-rays the alignment parameter A_2 values were evaluated and are given in table 1. Taking no uncertainties in *F*'s ratio, the errors in A_2 values are 7%.

According to Kamiya et al. [8], negative A_2 values result if the transfer momentum lies in the incident photon direction and the ionisation of m=0 electrons takes place. Similarly A_2 value is positive if the transfer momentum is perpendicular to the photon direction and the ionisation of m=1 electron takes place.

To make A_2 values free from the effect of CK transitions, the relation

$$A_{2}^{'} = \frac{\sigma_{L3}}{\left[\sigma_{L1}\left(f_{12}f_{23} + f_{13}\right) + \sigma_{L2}f_{23} + \sigma_{L3}\right]}A_{2}$$
(7)

was used to modify the values of alignment parameter A_2 as A_2' those were evaluated using photo ionization cross-section σ_{Li} of Scofield [9] and CK transition probabilities f_{ij} of Krause et al. [10] and are also listed in table 1. The value of alignment has reduced after applying CK correction at L₂ and L₁ excitations while these are same at only L₃ excitation shows that CK effect is nil at only L₃ excitation. Neglecting the plus / minus sign, A_2' values 0.19 to 0.12 are very much within the limits 0.5 and 0.05 for L₃ state [4] and show sufficient alignment at near edge energies E_{11} , E_{21} and E_{31} following the decreasing pattern from at E_{11} to E_{31} .

As the energies apart from the edges, alignment becomes negligible with A_2 ' values < 0.05 except at energy E_{12} . It shows the successive start of L_2 and L_1 ionization also impacts the L_3 vacancy population towards alignment. Further, to find whether this peculiar alignment character is due to the start of 5*d* filling in Gd, our data from measurements on other elements in rare earth region is to be analyzed.

5. Acknowledgement

The Experimental support from synchrotron radiation faculty, RRCAT, Indore and financial assistance from UGC-DAE in the form of project grant (CSR-IC-BL-18/CRS-115/2014-15/1211) are highly acknowledged.

REFERENCES

- [1] H.Bansal, G.Kaur, M. K. Tiwari and R.Mittal, Eur. Phys. J. D 70, 2016, 84.
- [2] H. Bansal, M. K. Tiwari and R.Mittal, J. Quant. Spectrosc. Radiat. Transfer 93, 2017a, 102.
- [3] E. G. Berezhko and N. M.Kabachnik, J. Phys. B: At. Mol. Opt. 10, 1977, 2467.
- [4] E. G. Berezhko, N. M. Kabachnik and V. S. Rostovsky, J. Phys. B: At. Mol. Phys. 11, 1978, 1749.
- [5] K. S. Mann, N. Singh, R. Mittal, K. L. Allawadhi and B. S. Sood, J. Phys. B: At. Mol. Opt. 23, 1990, 3521.
- [6] H. Bansal, M. K. Tiwari and R.Mittal, Radiat. Phys. Chem. 139, 2017b, 22.
- [7] R. A. Barrea, C. A. Perez, T. S. Plivelic, E. V. Bonziand and H. J.Sanchez, J. Phys. B: At. Mol. Opt. Phys. 38, 2005, 839.
- [8] M. Kamiya, Kinefuchi, H. Endo, A. Kuwako, K. Ishii and S. Morita, Phys. Rev. A 20, 1979, 1820.
- [9] J. H. Scofield, Lawrence Livermore Laboratory UCRL Report No. 51362(1973) (unpublised).
- [10] M. O. Krause, J. Phys. Chem. Ref. Data 8, 1979, 307.