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ABSTRACT 

Here we introduced a new advance subclass   ,P  of class  P  of analytic functions by using 

principle of subordination also obtained its sharp upper bound and  Fekete Szego inequality for function
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I INTRODUCTION 

The class of function of the form   ,
2
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n zazzf  which are analytic in the unit disk  

 1:  zzE  are denoted by class A                                                                      

 The class of function of the form   ,
2







n

n

n zazzf  which are analytic and univalent in the unit disk  

 1:  zzE  are denoted by class S. 

In (1916), Bieberbach [4, 5] proved a very useful result for the function of class S i.e. if   Szf   then 

.22 a after this he stated that this result is also true for all values of .n  If    Szf   then 

 nnan                                                                                                                                                 

In (1923), Lowner  [2]  proved the above result for third coefficient  that 33 a .  And it was natural to 
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find out some  relation between 3a and 
2

2a  for the class S  this famous relation was obtained by Fekete 

and Szego [6] with the help of Lowner’s method.  

Let   ,Szf  then 
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This inequality is very much helpful in obtaining estimates of higher coefficients for some subclasses of S 

(See Chhichra [1], Babalola [3]). 

Now we define some subclasses of S 

A function    Azf       is convex function if it is univalent in E and   Ef  is a convex domain. We 

denote the class of convex functions by K. 

For a function     Azf   if there exists a function 
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which is univalent and starlike in E such that 
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 This class of close to convex function was introduced by Kaplan  in 1952 and 

we denote the class of close to convex functions by C. 

Analytic bounded functions: Class of analytic bounded function is of the form 

     





1

.1,00,
n

n

n zwwzczw  

It is known that 
2

121 1,1 ccc  . 

Here we have a  class as  
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;   and the important subclasses of this 

function are  
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  Here the symbol 

stands for subordination. 

II MAIN RESULTS  

Theorem 1 :    Let      ,zffSzf  then  
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Proof:     By definition of      ,zffSzf   we have 
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While expanding the above series , we get 
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Comparing coefficients 
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By using above values, we obtain 
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 by using def. of bounded analytic function we redefine the above equation as  
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CASE 1: when 
2

1
  equation  * can be rewritten as  
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SUBCASE 1(a): when 0 the equation **  redefined as  
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SUBCASE 1(b): when 0  the equation **  redefined as 
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CASE 2: when 
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  equation  * can be rewritten as  
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SUBCASE 2(a): when 1 the equation ***  redefined as  

                                                     )(
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SUBCASE 2(b): when 1 the equation ***  redefined as  
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By combining the above (A,B,C,D) inequalities we get our result 



  

271 | P a g e  
 

                                                























1;
2

1

;10;
2

1

;0;
2

1

2

23









if

if

if

aa  

Thus the theorem is proved. 

The extremal function for the 1
st
 and 3

rd
 inequality is    
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The extremal function for  2
nd

 inequality is    
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Theorem 2 :    Let      BAzffSzf ,, then 
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Proof:    By definition we have     
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By expanding the series 
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Comparing coefficients of () 
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By using above values,  we get
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  equation  * can be rewritten as  
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By combining the above (A,B,C,D) inequalities we get our result 
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Thus the theorem is proved. 

The extremal function for the 1
st
 and 3

rd
 inequality is    
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The extremal function for  2
nd
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Corollary 1: Putting 1,1  BA   in  above  theorem, we get  
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Thus this is the result of theorem 1  
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