Continued Finite Fractions and Euclid's Algorithm

Parvinder Singh

Principal, S.G.G. S. Khalsa College, Mahilpur. (Hoshiarpur).

ABSTRACT

A "general" continued fraction representation of a real number x is one of the form

$$x = a_0 + \frac{b_1}{a_1 + \frac{b_2}{a_2 + \frac{b_3}{a_3 + \dots + \frac{b_{n_N}}{a_{n_N}}}}}$$

Where a_0 , a_1 , and b_1 , b_2 are integers. In this article we define convergents of a finite continued fraction and continued fractions with positive quotients and discuss fraction algorithm and Euclid's algorithm.

INTRODUCTION:

Define a function
$$f(n) = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots + \frac{1}{a_N}}}}$$
(a)

Consisting of N + 1 variables a_0, a_1, \ldots, a_N as a finite continued fraction. As the representation (a) is cumbersome, we shall usually write it as $[a_0, a_1, \ldots, a_n]$ and we call a_0, a_1, \ldots, a_n the partial quotients or simply the quotients of the finite continued fraction. As above we see that $[a_0] = \frac{a_0}{1}$,

$$[a_0, a_1] = \frac{a_0 a_1 + 1}{a_1}, [a_0, a_1, a_2] = \frac{a_2 a_1 a_0 + a_2 + a_0}{a_2 a_1 + 1} \dots$$
 Therefore $[a_0, a_1] = a_0 + \frac{1}{a_1}$ and

Similarly
$$[a_0, a_1, \dots, a_{n-1}, a_n] = [a_0, a_1, \dots, a_{n-2}, a_{n-1} + \frac{1}{a_n}] \dots (1.1)$$

i.e.
$$[a_0, a_1, \dots, a_n] = a_0 + \frac{1}{[a_0, a_1, \dots, a_n]} = [a_0, [a_0, a_1, \dots, a_n]], \text{ for } 1 \leq n \leq N$$

Moreover $[a_0, a_1, \dots, a_n] = [a_0, a_1, \dots, a_{m-1}, [a_m, a_{m+1}, \dots, a_n]]$ for $1 \le n \le N$.

Definition: The quantity $[a_0, a_1, \dots, a_n]$ for $(1 \le n \le N)$ is called nth convergent to $[a_0, a_1, \dots, a_N]$. Also it is easy to find the convergents by means of the following theorem.

Theorem 1.1: Let p_n and q_n be defined as under $p_0 = a_0$, $p_1 = a_1 a_0 + 1$, $p_n = a_n$ $p_{n-1} + p_{n-2}$ $(2 \le n \le N)$ and

$$q_1 = 1, q_1 = a_1, q_n = a_n \ q_{n-1} + q_{n-2} \ (2 \le n \le N) \text{ then } [a_0, a_1, \dots, a_n] = \frac{p_n}{q_n}.$$

Proof: For n=1 and n=1 theorem is obviously true.

Let suppose that result holds for $n \le m$, where m < N. Then

$$[a_0, a_1, \dots, a_{m-1}, a_m] = \frac{p_m}{q_m} = \frac{a_m p_{m-1} + p_{m-2}}{a_m q_{m-1} + q_{m-2}}$$
, and $p_{m-1}, p_{m-2}, q_{m-1}, q_{m-2}$ depend only upon a_0, a_1, \dots, a_{m-1} .

Hence using (1.1) we get $[a_0, a_1, \dots, a_{m-1}, a_m, a_{m+1}] = [a_0, a_1, \dots, a_{m-1}, a_m + a_m]$

$$\frac{1}{a_{m+1}} = \frac{\left(a_m + \frac{1}{a_{m+1}}\right)p_{m-1} + p_{m-2}}{\left(a_m + \frac{1}{a_{m+1}}\right)q_{m-1} + q_{m-2}} = \frac{a_{m+1}(a_m p_{m-1} + p_{m-2}) + p_{m-1}}{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}} = \frac{a_{m+1}p_m + p_{m-1}}{a_{m+1}q_m + q_{m-1}} = \frac{p_{m+1}}{q_{m+1}}$$

Hence by induction the theorem is proved.

Note: From $p_0 = a_0$, $p_1 = a_1 a_0 + 1$, $p_n = a_n p_{n-1} + p_{n-2}$ $(2 \le n \le N)$ and

$$q_1 = 1$$
, $q_1 = a_1$, $q_n = a_n \ q_{n-1} + q_{n-2} \ (2 \le n \le N)$ it follows that

$$\frac{p_n}{q_n} = \frac{a_n p_{n-1} + p_{n-2}}{a_n q_{n-1} + q_{n-2}}$$

Also
$$p_n q_{n-1} - p_{n-1} q_n = (a_n p_{n-1} + p_{n-2}) q_{n-1} - p_{n-1} (a_n q_{n-1} + q_{n-2})$$

= $-(p_{n-1} q_{n-2} - p_{n-2} q_{n-1}).$

Repeating the argument with n-1, n-2,.....,2 in place of n, we get

$$p_n q_{n-1} - p_{n-1} q_n = (-1)^{n-1} (p_1 q_0 - p_0 q_1) = (-1)^{n-1}.$$

Also
$$p_n q_{n-2}$$
- $p_{n-2} q_n = (a_n p_{n-1} + p_{n-2}) q_{n-2}$ - $p_{n-2} (a_n q_{n-1} + q_{n-2})$

$$= a_n(p_{n-1}q_{n-2} - p_{n-2}q_{n-1}) = (-1)^{n-1} a_n.$$

Remark: The functions p_n and q_n satisfies the following.

$$p_n q_{n-1} - p_{n-1} q_n = (-1)^{n-1} \text{ or } \frac{p_n}{q_n} - \frac{p_{n-1}}{q_{n-1}} = \frac{(-1)^{n-1}}{q_{n-1} q_n}$$

Also they satisfy
$$p_n q_{n-2} - p_{n-2} q_n = (-1)^{n-1} a_n$$
 or $\frac{p_n}{q_n} - \frac{p_{n-2}}{q_{n-2}} = \frac{(-1)^{n-1} a_n}{q_{n-2} q_n}$.

Definition: Now we assign numerical values to the quotients a_n so to the fraction $a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \cdots + \frac{1}{a_1 + \frac{1}{a_3 + \cdots + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_2 + \frac{1}{a_3 + \cdots + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_2 + \frac{1}{a_3 + \cdots + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_2 + \frac{1}{a_3 + \cdots + \frac{1}{a_1 + \frac{1}{a_2 + \frac$

Now suppose that $a_1 > 0, \ldots, a_N > 0$, a_0 may be negative, in this case the continued fraction is said to be simple. Write $x_n = \frac{p_n}{q_n}$, $x = x_N$ so that the value of the continued fraction is x_N or x. Then

$$[a_0, a_1, \dots, a_N] = [a_0, a_1, \dots, a_{n-1}, [a_n, a_{n+1}, \dots, a_N]]$$

$$= \frac{[a_n, a_{n+1}, \dots, a_N]p_{n-1} + p_{n-2}}{[a_n, a_{n+1}, \dots, a_N]q_{n-1} + q_{n-2}} \text{ for } 2 \le n \le N.$$

Note: As every q_n is positive then from $\frac{p_n}{q_n} - \frac{p_{n-2}}{q_{n-2}} = \frac{(-1)^{n-1}a_n}{q_{n-2}q_n}$ and $a_1 > 0, \ldots, a_N > 0$, $x_n - x_{n-2}$ has the sign of $(-1)^n$. Which proves that the even convergents x_{2n} increase strictly with n, while the odd convergents x_{2n+1} decrease strictly.

Also from
$$\frac{p_n}{q_n} - \frac{p_{n-1}}{q_{n-1}} = \frac{(-1)^{n-1}}{q_{n-1}q_n}$$
, $x_n - x_{n-1}$ has the sign of $(-1)^{n-1}$

so that $x_{2m+1} > x_{2m}$ contrary if we assume that $x_{2m+1} \le x_{2\mu}$ for some m, μ . If m $< \mu$ then from above $x_{2m+1} < x_{2m}$, and if m $< \mu$ then $x_{2\mu+1} < x_{2\mu}$ which is a contradiction. Hence we say that every odd convergent is greater than any even convergent.

Definition: If all a_n are integers then the continued fraction is called Simple Fraction. If p_n and q_n are integers and q_n is positive then

 $[a_0, a_1, \dots, a_N] = \frac{p_N}{q_N} = x$, we say that the number x (which is necessarily rational) is represented by the continued fraction.

Theorem 1.2: $q_n \ge n$, with inequality when n > 3.

Proof: In the first place, $q_0 = 1$, $q_1 = a_1 \ge 1$. If $n \ge 2$ then

$$q_n = a_n q_{n-1} + q_{n-2} \ge q_{n-1} + 1$$
 so that $q_n > q_{n-1}$ and $q_n \ge n$. If $n > 3$, then $q_n \ge q_{n-1} + q_{n-2} > q_{n-1} + 1 \ge n$, and so $q_n > n$.

Definition: Any simple continued fraction $[a_0, a_1, ..., a_N]$ represents a rational number $x = x_N$

Theorem 1.3: If x is representable by a simple continued fraction with an odd (even) number of convergents, it is also representable by one with an even (odd) number.

Proof: If
$$a_n \ge 2$$
 then $[a_0, a_1, \dots, a_n] = [a_0, a_1, \dots, a_n - 1, 1]$ while, if $a_n = 1$, $[a_0, a_1, \dots, a_{n-1}, 1] = [a_0, a_1, \dots, a_{n-2}, a_n + 1]$

For example [2,2,3]=[2,2,2,1] this choice of alternative representations is often useful. We call $a_n'=[a_n,a_{n+1},\ldots,a_N]$ ($0 \le n \le N$) the nth complete quotient of the continued fraction $[a_0,a_1,\ldots,a_N]$. Thus $\mathbf{x}=a_0', \ \mathbf{x}=\frac{a_1'a_0+1}{a_1'}$ and

$$x = \frac{a'_n p_{n-1} + p_{n-2}}{a'_n q_{n-1} + q_{n-2}}, \qquad (2 \le n \le N)$$
(b)

Theorem 1.4: $a_n = [a'_n]$, the integral part of a'_n except that $a_{N-1} = [a_{N-1}] - 1$ when $a_N = 1$.

Proof: If N = 0, then $a_0 = a_0' = [a_0']$. If N > 0 then $a_n' = a_n + \frac{1}{a_{n+1}'}$ ($0 \le n \le N-1$). Now $a_{n+1}' > 1$ ($0 \le n \le N-1$) except that $a_{n+1}' = 1$ when n = N-1 and $a_N = 1$.

Hence $a_n < a_n' < a_n + 1$ $(0 \le n \le N-1)$ and $a_n = [a_n']$ for $(0 \le n \le N-1)$ except in the case specified. And in any case $a_N = a_N' = [a_N']$.

Theorem 1.5: If two simple continued fractions $[a_0, a_1, \dots, a_N]$ and $[b_0, b_1, \dots, b_M]$ have the same value x, and $b_M > 1$, then M = N and the fractions are identical.

Proof: When we say that the two continued fractions are identical we mean that they are formed by the same sequence of partial quotients.

By the above theorem $a_0 = [x] = b_0$. Let us suppose that the first n partial quotients in the continued fractions are identical and that a_n' and b_n' are the nth complete quotients. Then $x = [a_0, a_1, \dots, a_{n-1}, a_n'] = [a_0, a_1, \dots, a_{n-1}, b_n']$.

If n = 1 then $a_0 + \frac{1}{a_1'} = a_0 + \frac{1}{b_1'}$, $a_1' = b_1'$, and therefore by above theorem $a_1 = b_1$.

If
$$n > 1$$
, then by $\frac{a_n^{'}p_{n-1} + p_{n-2}}{a_n^{'}q_{n-1} + q_{n-2}} = \frac{b_n^{'}p_{n-1} + p_{n-2}}{b_n^{'}q_{n-1} + q_{n-2}}$,

 $(a_{n}^{'}-b_{n}^{'})(p_{n-1}q_{n-2}-p_{n-2}q_{n-1})=0$. But $p_{n-1}q_{n-2}-p_{n-2}q_{n-1}=(-1)^{n}$ then as $p_{n}q_{n-1}-p_{n-1}q_{n}=(-1)^{n-1}$ and so $a_{n}^{'}=b_{n}^{'}$, it follows from the above theorem that $a_{n}=b_{n}$.

Suppose now for example, that $N \le M$. Then our argument shows that $a_n = b_n$ for

$$N \le M$$
. If $M > N$ then $\frac{p_N}{q_N} = [a_0, a_1, \dots, a_N] = [a_0, a_1, \dots, a_N, b_{N+1}, \dots, b_M]$

$$= \frac{b'_{N+1}p_N + p_{N-1}}{b'_{N+1}q_N + q_{N-1}}, \text{ Hence by (b) } p_N q_{N-1} - p_{N-1}q_N = 0 \text{ which is false. Hence } M = N$$

Continued fraction algorithm and Euclid's algorithm:

and the fractions are identical.

Let x be any real number, and let $a_0 = [x]$. Then $x = a_0 + \xi_0$, $0 \le \xi_0 < 1$.

If
$$\xi_0 \neq 0$$
, we can write $\frac{1}{\xi_0} = a_1'$, $[a_n'] = a_1$, $a_1' = a_1 + \xi_1$, $0 \le \xi_1 < 1$.

If
$$\xi_1 \neq 0$$
, we can write $\frac{1}{\xi_1} = a_2' = a_2 + \xi_2$, $0 \leq \xi_2 < 1$, and so on

Also
$$a'_n = \frac{1}{\xi_{n-1}} > 1$$
, and so $a_n \ge 1$, for $n \ge 1$. Thus $x = [a_0, a'_1] = [a_0, a_1 + \frac{1}{a'_2}] = [a_0, a_1, a'_2] = [a_0, a_1, a_2, a'_3] = \dots$ where a_0, a_1, a_2, \dots are integers and $a_1 > 0, a_2 > 0, \dots$

The system of equations $x = a_0 + \xi_0$, $(0 \le \xi_0 < 1)$,

$$\frac{1}{\xi_0} = a_1' = a_1 + \xi_1, \ (0 \le \xi_1 < 1),$$

$$\frac{1}{\xi_1} = a_2' = a_2 + \xi_2, \ (0 \le \xi_2 < 1),$$

..... is known as the continued fraction algorithm.

The algorithm continues so long as $\xi_n \neq 0$. If we eventually reach a value of n, say N, for which $\xi_N = 0$, the algorithm terminates and $x = [a_0, a_1, \dots, a_N]$.

In this case x is represented by a simple continued fraction, and is rational. The number a'_n are the complete quotients of the continued fraction.

Theorem 1.6: Any rational number can be represented by a finite simple continued fraction.

Proof: If x is an integer, then $\xi_0 = 0$ and $x = a_0$. If x is not integral, then $x = \frac{h}{k}$, where h and k are integers and k > 1. Since $\frac{h}{k} = a_0 + \xi_0$, $h = a_0 k + \xi_0 k$, a_0 is the quotient, and $k_1 = \xi_0 k$ the remainder, when h is divided by k.

The non-negative integers k, k_1 , k_2 , form a strictly decreasing sequence, and so $k_{n+1} = 0$ for some N. It follows that $\xi_N = 0$ for some N, and the continued fraction algorithm terminates. This proves the theorem.

Remark: The system of equations

$$h = a_0 k + k_1$$
, $(0 < k_1 < k)$,

$$k = a_1 k_1 + k_2$$
, $(0 < k_2 < k_1)$,

$$k_{N-2} = a_{N-1}k_{N-1} + k_N, \qquad (0 < k_N < k_{N-1}),$$

 $k_{N-1} = a_N k_N$ is known as Euclid's algorithm.

Difference between the fraction and its convergents:

Suppose N > 1 and n > 0 then by $x = \frac{a'_n p_{n-1} + p_{n-2}}{a'_n q_{n-1} + q_{n-2}}$, $(1 \le n \le N-1)$ and so

$$x - \frac{p_n}{q_n} = -\frac{p_n q_{n-1} - p_{n-1} q_n}{q_n (a'_{n+1} q_n + q_{n-1})} = \frac{(-1)^n}{q_n (a'_{n+1} q_n + q_{n-1})}$$
, Also $x - \frac{p_0}{q_0} = x - a_0 = \frac{1}{a'_1}$.

If we write
$$q_1' = a_1'$$
, $q_n' = a_n' q_{n-1} + q_{n-2}$, $(1 \le n \le N-1)$

(So in particular $q_N^{'} = q_N$), we have the following theorem.

Theorem 1.7: If
$$1 \le n \le N-1$$
, then $x - \frac{p_n}{q_n} = \frac{(-1)^n}{q_n \ q'_{n+1}}$

Proof:
$$a_{n+1} < a'_{n+1} < a_{n+1} + 1$$
 for $n \le N - 2$,

by the equation $a_n < a'_n < a_n + 1$ ($0 \le n \le N-1$), except that $a'_{N-1} = a_{N-1} + 1$ when $a_N = 1$. Hence if we ignore this exceptional case for the moment, we have

$$q_1 = a_1 < a'_1 + 1 \le q_2 \text{ and } q'_{n+1} = a'_{n+1}q_n + q_{n-1} > a_{n+1}q_n + q_{n-1} = q_{n+1}$$

$$q'_{n+1} < a_{n+1}q_n + q_{n-1} + q_n = q_{n+1} + q_n \le a_{n+2}q_{n+1} + q_n = q_{n+2},$$

for $1 \le n \le N-2$. It follows that $\frac{1}{q_{n+2}} < |p_n - q_n x| < \frac{1}{q_{n+1}}$ $(n \le N-2)$ while $|p_{N-1} - q_{N-1} x| = \frac{1}{q_N}$, $p_N - q_N x = 0$ in the exceptional case $q'_{n+1} < a_{n+1}q_n + q_{n-1} + q_n = q_{n+1} + q_n \le a_{n+2}q_{n+1} + q_n = q_{n+2}$ must be replaced by $q'_{N-1} = (|a_{N-1} + 1)|q_{N-2} + q_{N-3} = q_{N-1} + q_{N-2} = q_N$ and the first inequality. In the case $\frac{1}{q_{n+2}} < |p_n - q_n x| < \frac{1}{q_{n+1}}$ $(n \le N-2)$ by an equality. In this case shows that $|p_n - q_n x|$ decreases steadily as n increases, Since q_n increases steadily, $|x - \frac{p_n}{q_n}|$ decreases steadily.

We may sum up the most important conclusion in the following theorem

i.e. If N >1, n >0 then the differences $x - \frac{p_n}{q_n}$, $q_n x - p_n = \frac{(-1)^n \delta_n}{q_{n+1}}$, where $0 < \delta_n < 1$ $(1 \le n \le N-2)$, $\delta_{N-1} = 1$, $|x - \frac{p_n}{q_n}| \le \frac{1}{q_n q_{n+1}} < \frac{1}{q_n^2}$ for $n \le N-1$ with inequality in both places except when n = N-1.

REFERENCES

[1]Acton, F. S. "Power Series, Continued Fractions, and Rational Approximations." Ch. 11 in *Numerical Methods That Work, 2nd printing*. Washington, DC: Math. Assoc. Amer., 1990.

- [2] Adamchik, V. "Limits of Continued Fractions and Nested Radicals." Mathematica J. 2, 54-57, 1992.
- [3] Dunne, E. and McConnell, M. "Pianos and Continued Fractions." Math. Mag. 72, 104-115, 1999.
- [4] H. S. Wall, Analytic Theory of Continued Fractions, D. Van Nostrand Company, Inc., 1948 ISBN 0-8284-0207-8
- [5] Jones, William B.; Thron, W. J. (1980). Continued Fractions: Analytic Theory and Applications. Encyclopedia of Mathematics and its Applications. 11. Reading. Massachusetts: Addison-Wesley Publishing Company. ISBN 0-201-13510-8.
- [6] Rockett, Andrew M.; Szüsz, Peter (1992). Continued Fractions. World Scientific Press. ISBN 981-02-1047-7.