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ABSTRACT 

A "general" continued fraction representation of a real number x is one of the form  

𝑥 =  𝑎0 + 
𝑏1

𝑎1+
𝑏2

𝑎2+
𝑏3

𝑎3+⋯………

               + 
𝑏𝑛
𝑎𝑁

 

Where  𝑎0 , 𝑎1, . ... and  𝑏1, 𝑏2 … ..are integers. In this article we  define convergents of a finite continued 

fraction and  continued fractions with positive quotients and discuss fraction algorithm and Euclid’s 

algorithm. 

 

INTRODUCTION: 

Define a function 𝑓(n) = 𝑎0 + 
1

𝑎1+
1

𝑎2+
1

𝑎3+⋯………

               + 
1
𝑎𝑁

 ……………….(a) 

Consisting of N + 1 variables  𝑎0, 𝑎1, …… , 𝑎𝑁  as a finite continued fraction. As the representation 

(a) is cumbersome, we shall usually write it as [𝑎0 , 𝑎1 , … . . , 𝑎𝑛 ] and we call 𝑎0 , 𝑎1 , … . , 𝑎𝑛  the partial 

quotients or simply the quotients of the finite continued fraction. As above we see that [𝑎0] =  
𝑎0

1
 , 

[𝑎0 , 𝑎1] = 
𝑎0𝑎1+1

𝑎1
 ,[𝑎0, 𝑎1 , 𝑎2] = 

𝑎2𝑎1𝑎0+𝑎2+𝑎0

𝑎2𝑎1+1
 ……. Therefore [𝑎0 , 𝑎1] = 𝑎0 +

1

𝑎1
  and  

Similarly [𝑎0 , 𝑎1 , …… , 𝑎𝑛−1, 𝑎𝑛 ]= [𝑎0 , 𝑎1 , … . . , 𝑎𝑛−2 , 𝑎𝑛−1 +
1

𝑎𝑛
]…………..(1.1) 

i.e. [𝑎0 , 𝑎1 , …… , 𝑎𝑛 ] = 𝑎0+
1

[𝑎0 ,𝑎1 ,……,𝑎𝑛 ] 
 = [𝑎0,[𝑎0, 𝑎1, …… , 𝑎𝑛 ]], for 1≤ 𝑛 ≤ N 

Moreover [𝑎0, 𝑎1 , …… , 𝑎𝑛 ] = [𝑎0, 𝑎1 , …… , 𝑎𝑚−1,[𝑎𝑚 , 𝑎𝑚+1, …… , 𝑎𝑛 ]] for 1≤ 𝑛 ≤ 

N. 

http://mathworld.wolfram.com/RealNumber.html
http://mathworld.wolfram.com/OftheForm.html
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Definition: The quantity [𝑎0, 𝑎1 , …… , 𝑎𝑛 ] for (1≤ 𝑛 ≤ N) is called nth convergent 

to [𝑎0, 𝑎1 , …… , 𝑎𝑁]. Also it is easy to find the convergents by means of the 

following theorem. 

Theorem 1.1: Let 𝑝𝑛  and 𝑞𝑛  be defined as under 𝑝0 = 𝑎0, 𝑝1= 𝑎1𝑎0 + 1, 𝑝𝑛  = 𝑎𝑛  

𝑝𝑛−1 + 𝑝𝑛−2   (2≤ 𝑛 ≤ N) and  

𝑞1 = 1, 𝑞1= 𝑎1, 𝑞n  = 𝑎𝑛  𝑞𝑛−1 + 𝑞𝑛−2   (2≤ 𝑛 ≤ N) then [𝑎0 , 𝑎1, …… , 𝑎𝑛 ] = 
𝑝𝑛

𝑞𝑛
. 

Proof: For n=1 and n =1 theorem is obviously true. 

Let suppose that result holds for n ≤ 𝑚, where m < N. Then  

[𝑎0, 𝑎1 , …… , 𝑎𝑚−1,𝑎𝑚 ] = 
𝑝𝑚

𝑞𝑚
 = 

𝑎𝑚  𝑝𝑚−1+ 𝑝𝑚−2

𝑎𝑚  𝑞𝑚−1+𝑞𝑚−2
, and 𝑝𝑚−1, 𝑝𝑚−2, 𝑞𝑚−1, 𝑞𝑚−2 depend 

only upon 𝑎0, 𝑎1, …… , 𝑎𝑚−1. 

Hence using (1.1) we get [𝑎0, 𝑎1, …… , 𝑎𝑚−1,𝑎𝑚 , 𝑎𝑚+1] = [𝑎0, 𝑎1 , …… , 𝑎𝑚−1,𝑎𝑚 +

1

𝑎𝑚+1
] = 

 𝑎𝑚 +
1

𝑎𝑚+1
  𝑝𝑚−1+ 𝑝𝑚−2

 𝑎𝑚 +
1

𝑎𝑚+1
  𝑞𝑚−1+ 𝑞𝑚−2

 = 
𝑎𝑚+1 𝑎𝑚 𝑝𝑚−1+ 𝑝𝑚−2 +𝑝𝑚−1

𝑎𝑚+1 𝑎𝑚 𝑞𝑚−1+ 𝑞𝑚−2 +𝑞𝑚−1
 = 

𝑎𝑚+1p𝑚 +𝑝𝑚−1

𝑎𝑚+1q𝑚 +𝑞𝑚−1
 = 

𝑝𝑚+1

𝑞𝑚+1
 

Hence by induction the theorem is proved. 

Note: From 𝑝0 = 𝑎0, 𝑝1= 𝑎1𝑎0 + 1, 𝑝𝑛  = 𝑎𝑛  𝑝𝑛−1 + 𝑝𝑛−2   (2≤ 𝑛 ≤ N) and  

𝑞1 = 1, 𝑞1 = 𝑎1, 𝑞n  = 𝑎𝑛  𝑞𝑛−1 + 𝑞𝑛−2   (2≤ 𝑛 ≤ N) it follows that  

𝑝𝑛

𝑞𝑛
 = 

𝑎𝑛p𝑛−1+𝑝𝑛−2

𝑎𝑛q𝑛−1+𝑞𝑛−2
  

Also  𝑝𝑛𝑞𝑛−1- 𝑝𝑛−1𝑞n  = (𝑎𝑛  𝑝𝑛−1 + 𝑝𝑛−2) 𝑞𝑛−1 − 𝑝𝑛−1(𝑎𝑛  𝑞𝑛−1 + 𝑞𝑛−2) 

= - (𝑝𝑛−1𝑞𝑛−2 − 𝑝𝑛−2𝑞𝑛−1). 

Repeating the argument with n-1, n-2,……,2 in place of n, we get  

𝑝𝑛𝑞𝑛−1- 𝑝𝑛−1𝑞n  =  −1 𝑛−1 (𝑝1𝑞0-𝑝0𝑞1) =  −1 𝑛−1. 

Also 𝑝𝑛𝑞𝑛−2- 𝑝𝑛−2𝑞n  = (𝑎𝑛  𝑝𝑛−1 + 𝑝𝑛−2) 𝑞𝑛−2 -𝑝𝑛−2(𝑎𝑛  𝑞𝑛−1 + 𝑞𝑛−2) 

= 𝑎𝑛(𝑝𝑛−1𝑞𝑛−2 − 𝑝𝑛−2𝑞𝑛−1) = −1 𝑛−1 𝑎𝑛 . 

Remark: The functions 𝑝𝑛  and 𝑞𝑛  satisfies the following. 



 

277 | P a g e  
 

𝑝𝑛𝑞𝑛−1- 𝑝𝑛−1𝑞n  =  −1 𝑛−1  or  
𝑝𝑛

𝑞𝑛
 - 

𝑝𝑛−1

𝑞𝑛−1
 = 

 −1 𝑛−1

𝑞𝑛−1 𝑞𝑛
 

Also they   satisfy 𝑝𝑛𝑞𝑛−2- 𝑝𝑛−2𝑞n  =  −1 𝑛−1𝑎𝑛   or  
𝑝𝑛

𝑞𝑛
 - 

𝑝𝑛−2

𝑞𝑛−2
 = 

 −1 𝑛−1𝑎𝑛

𝑞𝑛−2 𝑞𝑛
. 

Definition:  Now we assign numerical values to the quotients 𝑎𝑛  so to the 

fraction  𝑎0 + 
1

𝑎1+
1

𝑎2+
1

𝑎3+⋯………

               + 
1
𝑎𝑁

 and to its convergents. 

Now suppose that 𝑎1 > 0,…….., 𝑎N > 0, 𝑎0 may be negative , in  this case the 

continued fraction is said to be simple. Write 𝑥n  = 
𝑝𝑛

𝑞𝑛
, x = 𝑥𝑁  so that the value of 

the continued fraction is 𝑥𝑁  or x. Then  

[𝑎0, 𝑎1 , …… , 𝑎𝑁] = [𝑎0, 𝑎1, …… , 𝑎𝑛−1,[𝑎𝑛 , 𝑎𝑛+1, …… , 𝑎𝑁]]  

= 
 𝑎𝑛 ,𝑎𝑛+1 ,……,𝑎𝑁  𝑝𝑛−1+ 𝑝𝑛−2

[𝑎𝑛 ,𝑎𝑛+1 ,……,𝑎𝑁 ]𝑞𝑛−1+ 𝑞𝑛−2
  for 2≤ 𝑛 ≤ N. 

Note: As every 𝑞𝑛  is positive then from   
𝑝𝑛

𝑞𝑛
 - 

𝑝𝑛−2

𝑞𝑛−2
 = 

 −1 𝑛−1𝑎𝑛

𝑞𝑛−2 𝑞𝑛
 and 𝑎1 >

0,…….., 𝑎N > 0, 𝑥n − 𝑥n−2 has the sign of  −1 𝑛 . Which proves that the even 

convergents 𝑥2n  increase strictly with n,  while the odd convergents  𝑥2n+1  

decrease strictly. 

Also from 
𝑝𝑛

𝑞𝑛
 - 

𝑝𝑛−1

𝑞𝑛−1
 = 

 −1 𝑛−1

𝑞𝑛−1 𝑞𝑛
 , 𝑥n − 𝑥n−1 has the sign of  −1 𝑛−1  

so that 𝑥2m+1 > 𝑥2m  contrary if we assume that 𝑥2m+1 ≤ 𝑥2𝜇  for some m, 𝜇.If m 

< 𝜇  then from above 𝑥2m+1 < 𝑥2m , and  if m < 𝜇   then 𝑥2𝜇+1 < 𝑥2𝜇which is a 

contradiction. Hence we say that every odd convergent is greater than any even 

convergent. 

Definition: If all 𝑎𝑛  are integers then the continued fraction is called Simple 

Fraction. If 𝑝𝑛  and 𝑞𝑛  are integers and 𝑞𝑛  is positive then  
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[𝑎0, 𝑎1 , …… , 𝑎𝑁] =  
𝑝N

𝑞𝑁
 = x, we say that the number x ( which  is necessarily 

rational) is represented by the continued fraction. 

 

Theorem 1.2: 𝑞𝑛  ≥ 𝑛, with inequality when n > 3. 

Proof: In the first place, 𝑞0 = 1, 𝑞1 = 𝑎1 ≥ 1. If  n ≥ 2 then 

 𝑞𝑛 =  𝑎𝑛𝑞𝑛−1+ 𝑞𝑛−2 ≥ 𝑞𝑛−1+1 so that 𝑞𝑛  > 𝑞𝑛−1 and 𝑞𝑛  ≥ 𝑛. If n > 3, then  

𝑞𝑛  ≥ 𝑞𝑛−1 + 𝑞𝑛−2 > 𝑞𝑛−1+1 ≥ n, and so 𝑞𝑛 > 𝑛. 

Definition: Any simple continued fraction [𝑎0 , 𝑎1, …… , 𝑎𝑁] represents a rational 

number x = 𝑥𝑁  

Theorem 1.3: If x is representable by a simple continued fraction with an odd 

(even) number of convergents, it is also representable by one with an even (odd) 

number. 

Proof: If 𝑎𝑛  ≥ 2  then [𝑎0, 𝑎1 , …… , 𝑎𝑛 ] = [𝑎0, 𝑎1, …… , 𝑎𝑛 − 1,1] while, if 𝑎𝑛  = 1, 

[𝑎0, 𝑎1 , …… , 𝑎𝑛−1 , 1] = [𝑎0, 𝑎1 , …… , 𝑎𝑛−2, 𝑎𝑛 + 1] 

 For example [2,2,3] = [2,2,2,1] this choice of alternative representations is often 

useful. We call 𝑎𝑛
′  = [𝑎𝑛 , 𝑎𝑛+1, …… , 𝑎𝑁] ( 0 ≤ 𝑛 ≤ N) the nth complete quotient 

of the continued fraction [𝑎0, 𝑎1 , …… , 𝑎𝑁]. Thus x = 𝑎0
′ ,   x = 

𝑎1 
′ 𝑎0+ 1

𝑎1 
′  and  

x = 
𝑎𝑛
′ 𝑝𝑛−1+ 𝑝𝑛−2

𝑎𝑛
′ 𝑞𝑛−1+ 𝑞𝑛−2

 ,       (2 ≤ 𝑛 ≤ N)                                                …………….(b) 

Theorem 1.4: 𝑎𝑛  = [𝑎𝑛
′ ], the integral part of 𝑎𝑛

′  except that 𝑎𝑁−1 = [𝑎𝑁−1] − 1 

when 𝑎𝑁  = 1. 

Proof: If N = 0, then 𝑎0  = 𝑎0
′ = [𝑎0

′ ]. If N > 0 then 𝑎𝑛
′ = 𝑎𝑛+ 

1

𝑎𝑛+1
′  (0 ≤ 𝑛 ≤ N-1). 

Now 𝑎𝑛+1
′  > 1 (0 ≤ 𝑛 ≤ N-1) except that 𝑎𝑛+1

′  = 1 when n = N -1 and 𝑎𝑁  = 1. 
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Hence 𝑎𝑛  < 𝑎𝑛
′  < 𝑎𝑛 + 1 (0 ≤ 𝑛 ≤ N-1) and 𝑎𝑛  = [𝑎𝑛

′ ] for (0 ≤ 𝑛 ≤ N-1) except 

in the case specified. And in any case 𝑎𝑁  = 𝑎𝑁
′ = [𝑎𝑁

′ ]. 

Theorem 1.5: If two simple continued fractions [𝑎0, 𝑎1, …… , 𝑎𝑁] and 

[𝑏0, 𝑏1 , …… , 𝑏𝑀] have the same value x, and 𝑏𝑀 > 1, then M = N and the fractions 

are identical. 

Proof: When we say that the two continued fractions are identical we mean that 

they are formed by the same sequence of partial quotients. 

By the above theorem 𝑎0 = [x] = 𝑏0. Let us suppose that the first n partial quotients 

in the continued fractions are identical and that 𝑎𝑛
′  𝑎𝑛𝑑 𝑏𝑛

′  are the nth complete 

quotients. Then x = [𝑎0, 𝑎1, …… , 𝑎𝑛−1, 𝑎𝑛
′ ] = [𝑎0, 𝑎1 , …… , 𝑎𝑛−1, 𝑏𝑛

′ ]. 

If n = 1 then 𝑎0 +
1

𝑎1
′  = 𝑎0 +

1

𝑏1
′  , 𝑎1

′ =  𝑏1
′ , and therefore by above theorem 𝑎1 =  𝑏1. 

If n > 1, then by 
𝑎𝑛
′ 𝑝𝑛−1+ 𝑝𝑛−2

𝑎𝑛
′ 𝑞𝑛−1+ 𝑞𝑛−2

 = 
𝑏𝑛
′ 𝑝𝑛−1+ 𝑝𝑛−2

𝑏𝑛
′ 𝑞𝑛−1+ 𝑞𝑛−2

 ,  

(𝑎𝑛
′ − 𝑏𝑛

′ )( 𝑝𝑛−1𝑞𝑛−2 − 𝑝𝑛−2𝑞𝑛−1 ) = 0. But 𝑝𝑛−1𝑞𝑛−2 − 𝑝𝑛−2𝑞𝑛−1 =  −1 𝑛  then 

as 𝑝𝑛𝑞𝑛−1 − 𝑝𝑛−1𝑞𝑛  =  −1 𝑛−1 and so 𝑎𝑛
′ =  𝑏𝑛

′ , it follows from the  above 

theorem  that 𝑎𝑛 =  𝑏𝑛 . 

Suppose now for example, that N ≤ M. Then our argument shows that 𝑎𝑛 =  𝑏𝑛  for 

N ≤ M. If M > N then 
𝑝N

𝑞𝑁
 = [𝑎0, 𝑎1, …… , 𝑎𝑁] = [𝑎0, 𝑎1 , …… , 𝑎N , 𝑏 𝑁+1, …… , 𝑏𝑀] 

 = 
𝑏𝑁+1
′  𝑝𝑁+ 𝑝𝑁−1

𝑏𝑁+1
′  𝑞𝑁+ 𝑞𝑁−1

, Hence by (b) 𝑝𝑁𝑞𝑁−1 − 𝑝N−1𝑞𝑁 = 0 which is false. Hence M = N 

and the fractions are identical. 

Continued fraction algorithm and Euclid’s algorithm:  

Let x be any real number, and let 𝑎0 = [x]. Then x = 𝑎0+ 𝜉0, 0 ≤ 𝜉0 < 1. 

If 𝜉0 ≠  0, we can write 
1

𝜉0
 = 𝑎1

′ , [𝑎𝑛
′ ] = 𝑎1, 𝑎1

′  = 𝑎1 + 𝜉1, 0 ≤ 𝜉1 < 1. 
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If 𝜉1 ≠  0, we can write 
1

𝜉1
 = 𝑎2

′   = 𝑎2 + 𝜉2, 0 ≤ 𝜉2 < 1, and so on 

Also 𝑎𝑛
′ = 

1

𝜉n−1
 > 1, and so 𝑎𝑛 ≥ 1, for n≥ 1. Thus x = [𝑎0, 𝑎1

′ ] = [𝑎0 , 𝑎1 + 
1

𝑎2
′ ] = 

[𝑎0, 𝑎1 , 𝑎2
′ ] = [𝑎0, 𝑎1, 𝑎2, 𝑎3

′ ] = …….. where   𝑎0, 𝑎1, 𝑎2,…… are integers and 

𝑎1 > 0, 𝑎2 > 0,………. 

The system of equations x = 𝑎0+ 𝜉0, (0 ≤ 𝜉0 < 1), 

                                        
1

𝜉0
 = 𝑎1

′ =  𝑎1 + 𝜉1,  (0 ≤ 𝜉1 < 1), 

                                        
1

𝜉1
 = 𝑎2

′   = 𝑎2 + 𝜉2,  (0 ≤ 𝜉2 < 1), 

                                       ………….. is known as the continued fraction algorithm. 

The algorithm continues so long as 𝜉n  ≠ 0. If we eventually reach a value of n, say 

N, for which 𝜉N  = 0, the algorithm terminates and x = [𝑎0, 𝑎1, …… , 𝑎𝑁]. 

In this case x is represented by a simple continued fraction, and is rational. The 

number  𝑎𝑛
′   are the complete quotients of the continued fraction. 

Theorem 1.6: Any rational number can be represented by a finite simple continued 

fraction. 

Proof: If x is an integer, then 𝜉0 = 0 and x =  𝑎0. If x is not integral, then x = 
ℎ

𝑘
,  

where h and k are integers and k > 1. Since 
ℎ

𝑘
 = 𝑎0+ 𝜉0, h = 𝑎0k + 𝜉0k, 𝑎0 is the 

quotient, and 𝑘1 = 𝜉0k the remainder, when h is divided by k. 

If 𝜉0 ≠ 0 then 𝑎1
′ =  

1

𝜉0
 = 

𝑘

𝑘1
 and 

𝑘

𝑘1
 = 𝑎1 + 𝜉1, k = 𝑎1𝑘1 + 𝜉1𝑘1; thus 𝑎1 is the 

quotient, and 𝑘2 = 𝜉1𝑘1 the remainder, when k is divided by 𝑘1.Thus we obtain a 

series of equations h = 𝑎0k + 𝑘1 ,        k = 𝑎1𝑘1 + 𝑘2, 𝑘1 = 𝑎2𝑘2 + 𝑘3,……………. 

Continuing so long as 𝜉n  ≠ 0, or what is the same thing, so long as 𝑘𝑛+1 ≠ 0. 
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The non-negative integers k, 𝑘1, 𝑘2, ………. form a strictly decreasing sequence, 

and so 𝑘𝑛+1 = 0 for some N. It follows that 𝜉𝑁  = 0 for some N, and the continued 

fraction algorithm terminates. This proves the theorem. 

Remark: The system of equations  

      h = 𝑎0k + 𝑘1 ,   (0 < 𝑘1 < 𝑘), 

     k = 𝑎1𝑘1 + 𝑘2,   (0 < 𝑘2 <  𝑘1), 

……………………………….. 

𝑘𝑁−2 = 𝑎𝑁−1𝑘𝑁−1 + 𝑘𝑁 ,        (0 < 𝑘𝑁 <  𝑘𝑁−1), 

𝑘𝑁−1 = 𝑎𝑁𝑘𝑁 is known as Euclid’s algorithm. 

 

Difference between the fraction and its convergents: 

Suppose N > 1 and n > 0 then by x = 
𝑎𝑛
′ 𝑝𝑛−1+ 𝑝𝑛−2

𝑎𝑛
′ 𝑞𝑛−1+ 𝑞𝑛−2

 ,       (1 ≤ 𝑛 ≤ N-1)  and so  

x - 
𝑝𝑛

𝑞𝑛
 = - 

𝑝𝑛𝑞𝑛−1− 𝑝𝑛−1 𝑞𝑛

𝑞𝑛  (𝑎𝑛+1 
′ 𝑞𝑛+ 𝑞𝑛−1 )

 = 
 −1 𝑛

𝑞𝑛  (𝑎𝑛+1 
′ 𝑞𝑛+ 𝑞𝑛−1 )

 , Also x - 
𝑝0

𝑞0
 = x - 𝑎0 = 

1

𝑎1
′ . 

If we write 𝑞1
′  = 𝑎1

′ , 𝑞𝑛
′  = 𝑎𝑛

′ 𝑞𝑛−1 + 𝑞𝑛−2 ,      (1 ≤ 𝑛 ≤ N-1)   

(So in particular 𝑞𝑁
′  = 𝑞𝑁), we have the following theorem. 

Theorem 1.7: If 1 ≤ 𝑛 ≤ N-1, then    x - 
𝑝𝑛

𝑞𝑛
 =  

 −1 𝑛

𝑞𝑛   𝑞𝑛+1 
′  

Proof: 𝑎𝑛+1 <  𝑎𝑛+1 
′ < 𝑎𝑛+1 +1 for n ≤ 𝑁 − 2,  

by  the equation 𝑎𝑛  < 𝑎𝑛
′  < 𝑎𝑛 + 1 (0 ≤ 𝑛 ≤ N-1), except that 𝑎𝑁−1

′  = 𝑎𝑁−1 +1 

when 𝑎𝑁  =1. Hence if we ignore this exceptional case for the moment, we have  

𝑞1 =𝑎1 < 𝑎1
′  + 1≤ 𝑞2 and 𝑞𝑛+1 

′  = 𝑎𝑛+1
′ 𝑞𝑛 + 𝑞𝑛−1 > 𝑎𝑛+1𝑞𝑛 + 𝑞𝑛−1 =  𝑞𝑛+1 

𝑞𝑛+1
′  < 𝑎𝑛+1𝑞𝑛 + 𝑞𝑛−1+ 𝑞𝑛 = 𝑞𝑛+1+𝑞𝑛  ≤ 𝑎𝑛+2𝑞𝑛+1 + 𝑞𝑛  = 𝑞𝑛+2,  
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for 1 ≤ 𝑛 ≤ N-2. It  follows that 
1

𝑞𝑛+2
 < |𝑝𝑛 − 𝑞𝑛x| < 

1

𝑞𝑛+1
  (𝑛 ≤ N-2) while 

|𝑝𝑁−1 − 𝑞𝑁−1x| = 
1

𝑞𝑁
, 𝑝𝑁  − 𝑞𝑁x = 0  in the exceptional case 𝑞𝑛+1

′  < 𝑎𝑛+1𝑞𝑛 +

𝑞𝑛−1+ 𝑞𝑛 = 𝑞𝑛+1+𝑞𝑛  ≤ 𝑎𝑛+2𝑞𝑛+1 + 𝑞𝑛  = 𝑞𝑛+2 must be replaced by  

𝑞𝑁−1 
′ = (|𝑎𝑁−1 + 1) 𝑞𝑁−2+ 𝑞𝑁−3 = 𝑞𝑁−1+ 𝑞𝑁−2 = 𝑞𝑁 and the first inequality. In the 

case 
1

𝑞𝑛+2
 < |𝑝𝑛 − 𝑞𝑛x| < 

1

𝑞𝑛+1
  (𝑛 ≤ N-2) by an equality. In this case shows that 

|𝑝𝑛 − 𝑞𝑛x| decreases  steadily as n increases,  Since 𝑞𝑛  increases steadily, |x - 
𝑝𝑛

𝑞𝑛
| 

decreases steadily.  

We may sum up the most important conclusion in the following theorem 

i.e. If N >1, n >0 then the differences x - 
𝑝𝑛

𝑞𝑛
, 𝑞𝑛x - 𝑝𝑛  = 

 −1 𝑛𝛿𝑛

𝑞𝑛+1
, where 0 < 𝛿𝑛  < 1 

(1 ≤ 𝑛 ≤ N-2 ), 𝛿𝑁−1 = 1, |x - 
𝑝𝑛

𝑞𝑛
| ≤ 

1

𝑞𝑛𝑞𝑛+1
  < 

1

𝑞𝑛  
2  for n ≤ N-1 with inequality in 

both places except when n = N – 1. 
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