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ABSTRACT 

 

In topology, the dunce cap is a compact topological space formed by taking a solid triangle and gluing all three sides 

together, with the orientation of one side reversed. Simply gluing two sides oriented in the same direction would 

yield a cone much like the layman's dunce cap, but the gluing of the third side results in identifying the base of the 

cap with a line joining the base to the point. For the fundamental group, use the fact that we can find a homotopy 

between X and the wedge of S
2 

and  S
1
 (by moving the points where the chord joins S

2
 so they coincide). The 

fundamental group of the wedge S
2 

and S
1  

is the free product of  π
1 

(S
1
) and π

1
(S

2
) = 1, which  is π

1 
(S

1
)  = Z. In this 

paper we prove that the fundamental group of the n-fold dunce cap is a cyclic group of order n and the fundamental 

group of the torus is a free abelian group of rank 2. 
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Definition: Let X be a Housdorf space that is the union of the subspaces 𝑆1, 𝑆2,…., 𝑆𝑛  each of 

which is  homeomorphic to the unit circle 𝑠1. Assume that there is a point p of X such that  

𝑆𝑖 ∩ 𝑆𝑗  = {p} whenever i ≠ j. Then X is called the wedge of the circles  𝑆1, 𝑆2,…., 𝑆𝑛 . 

Note that each space 𝑆𝑖  being compact is closed in X. Also note that X can be embedded 

in the plane, If 𝐶𝑖  denote the circle of radius i in  𝑅2 with center at (i,0) then X is homeomorphic 

to 𝐶1 ∪ 𝐶2 ∩….∪  𝐶𝑛 . 

Theorem: Let X be the wedge of the circles 𝑆1, 𝑆2,…., 𝑆𝑛 , and p be the common point of these 

circles.Then 𝜋1(X,p) is a free group. If 𝑓𝑖  is a loop in 𝑆𝑖  that represents a generator of 𝜋1(𝑆𝑖 ,p), 

then the loops 𝑓1, 𝑓2 , … . , 𝑓𝑛  represent a system of  free generators for 𝜋1(X,p). 

Proof:  We prove this theorem by using induction. If  n = 1 the result is obvious.  

Let X be the wedge of the circles 𝑆1, 𝑆2,…., 𝑆𝑛 , with p be the common point. Chose a 

point 𝑞𝑖  of 𝑆𝑖  different from p for each i. Then the set 𝑊𝑖  = 𝑆𝑖−𝑞𝑖 , and let U = 𝑆1 ∪ 𝑊2 ∪ ……∪

 𝑊𝑛   and V = 𝑊1 ∪ 𝑆2 ∪ ……∪  𝑆𝑛  . Then U ∩V= 𝑊1 ∪ 𝑊2 ∪ ……∪  𝑊𝑛 .  We can visualize from 

the following figure 1. 

https://en.wikipedia.org/wiki/Topology
https://en.wikipedia.org/wiki/Compact_space
https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Triangle
https://en.wikipedia.org/wiki/Quotient_space_%28topology%29
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Figure 1 

The space 𝑊𝑖  is homeomorphic to an open interval, so it has the point p as a deformation retract: 

Let 𝐹𝑖 : 𝑊𝑖  × I → 𝑊𝑖  be the  deformation retraction. The maps 𝐹𝑖  fit together to define a map F : 

(U∩V) × I → U∩V that is a  deformation retraction of U∩V on to p.(To show that F is 

continuous, we note  that because 𝑆𝑖  is a  closed subspace of X, the space 𝑊𝑖= 𝑆𝑖 − 𝑞𝑖   is a closed 

subspace of U∩V, so that 𝑊𝑖  × I is a closed subspace of (U∩V) × I.) Then by Pasting lemma it 

follows that U∩V is simply connected, so that 𝜋1(X, p) is the free product of the groups 𝜋1(U, p) 

and 𝜋1(V, p), relative to  the monomorphisms induced by inclusions. 

  A similar argument shows that  𝑆1 is a deformation retract of U and 𝑆2 ∪….∪ 𝑆𝑛  is a 

deformation retract of V. It follows that 𝜋1(U, p) is infinite cyclic, and the loop 𝑓1 represents a 

generator. It also follows by using the induction hypothesis, that 𝜋1(V, p) is a free group, with 

the loops 𝑓2, …… , 𝑓n  representing a system of free generators. We generalize this result to a space 

X that is the union of infinitely many circles having a point in common. Here we must be careful 

about the topology of X. 

Definition: Let X be a space that is the union of the subspaces 𝑋𝛼 , for 𝛼 ∈ J. The topology of X 

said to be Coherent with the subspaces 𝑋𝛼  provided a subset C of X is closed in X if C ∩ 𝑋𝛼  is 

closed in 𝑋𝛼  for each 𝛼. An equivalent condition is that a set be open in X if its intersection with 

each 𝑋𝛼  is open in 𝑋𝛼 . 

Remark: If X is the union of finitely many closed subspaces 𝑋1,𝑋2, ….…., 𝑋𝑛 , then the topology 

of X is automatically coherent with these subspaces, since if C ∩ 𝑋𝑖  is closed in 𝑋𝑖 , it is closed in 

X, and C is the finite union of the sets C ∩ 𝑋𝑖 . 

Definition: Let X be a space that is the union of the subspaces 𝑆𝛼 , for 𝛼 ∈ J, each  of which is 

homeomorphic to the unit circle. Assume there is a point p of X such that 𝑆𝛼 ∩ 𝑆𝛽  = {p} 
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whenever 𝛼 ≠ 𝛽. If the topology of X is coherent with the subspaces 𝑆𝛼 , for 𝛼 ∈ J, then X is 

called  the wedge  of the circles 𝑆𝛼 . 

Remark: In the finite case, the definition involved the Hausdorff condition instead of the 

coherence condition; in that case the coherence condition followed. In the infinite case, this 

would no longer be true so we include the coherence condition as part of the definition. We 

would include the Hausdorff condition as well, but that is no longer necessary for it follows from 

the coherence condition. 

Lemma: Let X be the wedge of the circles 𝑆𝛼 , for 𝛼 ∈ J. Then X is normal. Furthermore any 

compact subspace of X is contained in the union of finitely many circles 𝑆𝛼 . 

Proof:  It is clear that one-point sets are closed in X.  Let A and B be disjoint closed subsets of 

X; assume that B does not contain p. Choose disjoint subsets 𝑈𝛼  and 𝑉𝛼  of 𝑆𝛼  that are open in 𝑆𝛼  

and contain {p}∪(A∩ 𝑆𝛼) and B∩ 𝑆𝛼 , respectively. Let U = ∪ 𝑈𝛼  and V = ∪ 𝑉𝛼  then U and V are 

disjoint. Now U∩ 𝑆𝛼= 𝑈𝛼  because all the sets 𝑈𝛼   contain p and V∩ 𝑆𝛼= 𝑉𝛼  because no set 𝑉𝛼  

contains p. Hence U and V are open in X as desired. Thus X is normal. 

Now let C be a compact subspace of X. For each 𝛼 for which it is possible, choose a 

point 𝑥0 of C∩ (𝑆𝛼 − p). The set D = {𝑥𝛼} is closed in X, because its intersection with each 

space 𝑆𝛼  is a one point set or is empty set. For the same reason, each subset of D is closed in X. 

Thus D is a closed discrete subspace of X contained in C; since C is limit point compact, D must 

be finite. 

Theorem: Let X be a wedge of the circles 𝑆𝛼 , for 𝛼 ∈ J; Let p be the common point of these 

circles. Then  𝜋1(X, p) is a free group. If 𝑓𝛼  is a loop in 𝑆𝛼  representing a generator of 

 𝜋1 𝑆𝛼 , p , then the loops {𝑓𝛼}  represent a system of free generators for  𝜋1 X, p . 

Proof: Let 𝑖𝛼 :  𝜋1 𝑆𝛼 , p  →  𝜋1(X, p) be the homeomorphism induced by inclusion; Let 𝐺𝛼  be 

the image of  𝑖𝛼 . Note that if  f is any loop in X based at p, then the image set of f is compact, so 

that f  lies in some   finite union of subspaces 𝑆𝛼 . Further more  if f and g are two loops  that are 

path homotopic in X, then they are actually path homotopic in some finite union of  the 

subspaces 𝑆𝛼 . 

It follows that the groups {𝐺𝛼} generate  𝜋1 X, p . For if f is a loop in X, then f lies in 

𝑆 𝛼1
∪ 𝑆 𝛼2

∪ ………∪ 𝑆 𝛼𝑛
for some finite set of indices; then this implies that [f] is a product of 
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elements of the groups 𝐺 𝛼1
, 𝐺 𝛼2

, ……… , 𝐺 𝛼𝑛
. Similarly it follows that 𝑖𝛽  is a  monomorphism. 

For if f is a loop in 𝑆β   that is path homotopic in X to a constant, then f is path homotopic  to a 

constant  in some finite union of spaces 𝑆𝛼 . So that f is path homotopic  to a constant in 𝑆β . 

Finally suppose there is a reduced non empty word w = (𝑔 𝛼1
, 𝑔 𝛼2

,……… , 𝑔 𝛼𝑛
) in the 

elements of the groups 𝐺𝛼  that represents the identity element of  𝜋1(X, p). Let f be a loop in X 

whose path homotopy class is represented by w. Then f is path homotopic to a constant in X, so 

that it is path homotopic to a constant in some finite union of subspaces 𝑆𝛼 . This is a 

contradiction. Hence the loops {𝑓𝛼} represent a system of free generators for  𝜋1(X, p). 

Example: Let 𝐶𝑛  be the circle of radius 
1

𝑛
 in 𝑅2 with center at ( 

1

𝑛
, 0 ). Let X is the subspace of 

𝑅2 that is the union of these circles; then X is the union of a countably infinite collection of these 

circles, each pair of which intersects in the origin p. However X is not the wedge of the circles 

𝐶𝑛 , we   call X the infinite earring. 

Lemma: Given an index set J, there exists a space X, that is a wedge of circles 𝑆𝛼  for 𝛼𝜖 J. 

Proof: Give the set J the discrete topology, and let E be the product space 𝑆1 × 𝐽.Chose a  point 

𝑏0 ∈ 𝑆1, and let X be the  quotient space obtained from E by   collapsing  the closed set  

P = 𝑏0 × 𝐽 to a point p. Let  𝜋 : E → X be the quotient map, and  𝑆𝛼  = (𝑆1 × 𝛼). We show that 

each 𝑆𝛼   is homeomorphic to 𝑆1 and X is the wedge of the circles 𝑆𝛼 . 

Note that if C is closed in 𝑆1 × 𝛼, then 𝜋(𝐶) is closed  in X. For 𝜋−1𝜋 (C) = C if the 

point  𝑏0  × 𝛼 is not in C, and 𝜋−1𝜋 (C) = C, if the point 𝑏0  × 𝛼 is not in C, and 

𝜋−1𝜋 (C) = C∪ P otherwise. In either case 𝜋−1𝜋 (C) is closed in 𝑆1 × 𝐽, so that 𝜋 (C) is 

closed in X. 

It follows that  𝑆𝛼  is itself closed in X, since 𝑆1 × 𝛼 is closed in 𝑆1 × 𝐽, and that 𝜋 maps 

𝑆1 × 𝛼 homeomorphically onto 𝑆𝛼 . Let 𝜋𝛼  be this homeomophism. 

To show that X has the topology coherent with the subspaces 𝑆𝛼 , let D ⊂ X and suppose 

that D∩ 𝑆𝛼  is  closed in 𝑆𝛼  for each 𝛼. Now 𝜋−1 (D) ∩ (𝑆1 × 𝛼) = 𝜋𝛼
−1(D∩ 𝑆𝛼); the latter set is 

closed in 𝑆1 × 𝛼 because 𝜋𝛼  is continuous. Then  𝜋−1 (D) is closed in 𝑆1 × 𝐽, so that D is closed 

in X by definition  of the quotient topology. 
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Adjoining a Two-cell: If we restrict the covering map p× 𝑝 to the unit square then we obtain a 

quotient map 𝜋: 𝐼2 → T where T = 𝑆1 × 𝑆1 the fundamental group of torus. But it maps Bd𝐼2onto 

the subspace A = ( 𝑆1 × 𝑏0) ∪(𝑏0 × 𝑆1), which is the wedge of two circles and maps the rest of 

𝐼2 bijectively onto T-A. Thus T can be thought of as the space obtained by pasting the edges of 

the square 𝐼2 onto the space A. The process is of constructing a space by pasting the edges of a 

polygonal region in the plane onto another space is quite useful. We here compute the 

fundamental group of such a space. 

Theorem: Let X be a Hausdorff space, A be a closed path connected sub-space of X. Suppose 

that there is a continuous map h: 𝐵2 → X that maps Int𝐵2  bijectively onto X-A and maps 

 𝑆1 = Bd𝐵2 into A. Let p ∈  𝑆1 and let a = h(p); let  k: ( 𝑆1 × p) → (A,a) be the map obtained by 

restricting h. Then the homeomorphism 𝑖∗: 𝜋1(A,a) → 𝜋1(X,a) induced  by  inclusion is 

surjective and its kernel is the least normal subgroup of 𝜋1(A,a) containing the image of 

k∗: 𝜋1(𝑆1,p) → 𝜋1(A,a).  

Proof: Step I. Let the origin O is the center point of 𝐵2, Let  𝑥0 be the point h(0) of X. If U is the 

open set then U = X -𝑥0 of X, we   show that A is a deformation retract of U.  

 

Figure 2 

Let  C = h (𝐵2), and  let 𝜋: 𝐵2 → C be the map obtained by  restricting the  range of h. 

Consider the map 𝜋 × 𝑖𝑑: 𝐵2 × 𝐼 → C× 𝐼, it is a closed map because 𝐵2 × 𝐼 is compact and 

C × 𝐼 is Hausdorff space, therefore it is a  quotient map. Its restriction  𝜋′ : (𝐵2 − 0) × 𝐼 → 

(C−𝑥0) × 𝐼 is also a quotient map; Since its domain is open in 𝐵2 × 𝐼 and is saturated with 
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respect to 𝜋 × 𝑖𝑑. There is a deformation retraction of 𝐵2 − 0 onto 𝑆1, it induces, via the quotient 

map   𝜋′ , a deformation  retraction of C-𝑥0 onto 𝜋(𝑆1). We extend this deformation retraction to 

all of U× 𝐼 by letting it keep each point of A fixed during the deformation. Thus A is a 

deformation retraction of U. 

It follows that the inclusion of A in to U induces an isomorphism of fundamental groups. 

Our theorem then reduces to the following statement: 

Let f be a loop whose class generates 𝜋1(𝑆1, p). Then the inclusion of U into X induces 

an epimorphism 𝜋1(U, a) → 𝜋1(X, a) whose kernel is the least  normal  subgroup containing the 

class of the loop g = hof. 

Step 2. In order to prove this result, it is convenient to consider first the homomorphism 

 𝜋1(U, b) → 𝜋1(X, b) induced by  inclusion relative to a base point b that  does not  belong to A. 

Let b be any point of U- A. Write X as the union of  the open sets U and  V = X – A = 𝜋(𝐼𝑛𝑡𝐵2). 

Now U is the path connected, since it has A as a deformation retracts. Because 𝜋 is a quotient 

map, its restriction to Int𝐵2 is also a quotient map and hence a homeomorphism, thus V is simply 

connected. The set U ∩ V = V −  𝑥0 is homeomorphic to Int𝐵2 −  0, so it is path connected and 

its fundamental group is infinite cyclic. Since b is a point of U ∩V, it implies that the 

homomorphism 𝜋1(U, b) → 𝜋1(X, b) induced by  inclusion is surjective, and  its kernel is the 

least normal subgroup containing the  image of the infinite  cyclic group 𝜋1(U ∩ V, b). 

Step 3. Now we change the base point back to a and proving the theorem. 

Let q be the point of 𝐵2 that is the midpoint of  the  line segment  from 0 to p, and  let b = h(q),  

then  b is a point of  U ∩V. Let 𝑓0 be a loop in Int𝐵2 −  0 based at q that represents a generator 

of the fundamental group of this space, then 𝑔0 = ho𝑓0 is a loop in U ∩V based at b that 

represents a generator of the fundamental group of U ∩V.  

Step 2 tells us that the homomorphism 𝜋1(U, b)→ 𝜋1(X, b) induced by inclusion is 

surjective and its kernel is the least normal subgroup containing the class of the loop 𝑔0 = ho𝑓0. 

To obtain the analogous result with base point a we proceed as follows. 

Let 𝛾 be the straight-line path in 𝐵2 from q to p, let 𝛿 be the path 𝛿 = 𝑜𝛾 in U from b to a. The 

isomorphism induced by the path 𝛿 commute with the homomorphisms induced by inclusion in 

the following diagram  
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                                                                                 𝜋1(U, b)→ 𝜋1(X, b) 

                                                                             ↓ 𝛿           ↓ 𝛿 

                                                                                 𝜋1(U, a)→ 𝜋1(X, a) 

Therefore the homomorphism of   𝜋1(U, a) 𝑖𝑛𝑡𝑜 𝜋1(X, a) induced by the inclusion is 

surjective, and its kernel is the least normal subgroup containing the element 𝛿. The loop 𝑓0 

represents a generator of the fundamental group of IntB – 0 based at q. Then the loop 𝛾 ∗ (𝑓0 ∗ 𝛾) 

represents a generator of the fundamental group of 𝐵2 −  0 based at p. Therefore, it is path 

homotopic either to f or its reverse; suppose the former. Following this path homotopy by the 

map h, we see that 𝛿 ∗ (𝑔0 ∗ 𝛿) is path homotopic in U to g. Hence the proof. 

Fundamental group of the Torus and the Dunce Cap: 

Now we have to apply the results of the above given section to compute the fundamental groups 

of Torus and the Dunce Cap. 

Theorem: The fundamental group of the torus has a presentation consisting of two generators 

𝛼, 𝛽 and a single    relation  𝛼𝛽𝛼−1𝛽−1. 

Proof: Let X = 𝑆1 × 𝑆1 be the torus, and let h: 𝐼2 → X be obtained by restricting the standard 

covering map p×p: R×R → 𝑆1 × 𝑆1. Let p be the point (0,0) of Bd𝐼2,let a = h(p) and  let  

A = h(Bd𝐼2).  Then the above said theorem is satisfied. 

The space A is the wedge of two circles, so that the fundamental group of A is free. Indeed if we 

let 𝑎0 be the path 𝑎0 t = (t,0) and 𝑏0be the path 𝑏0(t) = (0,t)  in Bd𝐼2, then the paths 𝛼 =ho𝑏0 

and 𝛽 = ho𝑏0 are loops in A such that [𝛼] and [𝛽] form a system of free generators for 𝜋1(A, a). 

See Fig 3 

 

 

Figure 3 
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Now let 𝑎1 and 𝑏1 be the paths 𝑎1(t) = (t,1) and 𝑏1(t) = (1,t) in Bd𝐼2. Consider the loop f 

in Bd𝐼2 defined by the equation f = 𝑎0*(𝑏1*(𝑎1*𝑏0)). Then f represents a generator of 

 𝜋1(Bd𝐼2, p); and the loop g = hof equals the product  𝛼*(𝛽*(𝛼*β)). Hence from the above   

theorem  𝜋1(X, a) is the quotient of the free group on the free generators [𝛼] and [𝛽] by the least 

normal subgroup containing the element [𝛼] [𝛽] [𝛼]−1 [𝛽]−1. 

Remark: The fundamental group of the torus is a free abelian group of rank 2. 

Let G be a free group on generators 𝛼, 𝛽 and let  N be the least normal subgroup containing the 

element 𝛼𝛽𝛼−1𝛽−1. Because this element is a commutator, N is contained in the commutator 

subgroup [G,G] of G. On the other hand, G/N is abelian; for it is generated by the coset 𝛼𝑁 

and 𝛽𝑁, and these elements of  G/N commute. Therefore N contains the commutator subgroup of 

G. Hence G/N is a free abelian group of rank 2. 

Definition: Let n be a positive integer with n > 1. Let r: 𝑆1 → 𝑆1 be a rotation through the angle 

2𝜋/𝑛, mapping the point (cos 𝜃, sin 𝜃) to the point (cos( 𝜃+2𝜋/𝑛), sin ( 𝜃 + 2𝜋/𝑛)). Form a 

quotient space X from the unit ball 𝐵2 by identifying each point x of 𝑆1 with the points    

 𝑟(x), 𝑟2(x),….., 𝑟𝑛−1(x). We shall show that X is a compact Hausdorff space; we call it the 

 n-fold dunce cap. 

Let 𝜋: 𝐵2 → 𝑋 be the quotient map; we show that 𝜋 is a closed map. In order to do this 

we must show that if C is a closed set  of 𝐵2, then 𝜋−1𝜋(𝐶) is also closed in 𝐵2; it then follow 

from the definition  of the quotient topology that 𝜋(𝐶)  is closed in X. Let 𝐶0 = C∩ 𝑆1; it is 

closed in 𝐵2. The set 𝜋−1𝜋(𝐶) equals the union of C  and the sets 𝑟(𝐶0), 𝑟2(𝐶0),….., 𝑟𝑛−1(𝐶0),  

all of which are  closed in 𝐵2, because r is a homomorphism. Hence 𝜋−1𝜋(𝐶) is closed in 𝐵2, as  

desired. 

Lemma: Let 𝜋: E → X be a closed quotient  map. If E is normal, then so is X. 

Proof: Assume that E is normal. One point sets are closed in X because one-point sets are closed 

in E. Now let A and B be disjoint closed sets of X. Then 𝜋−1(𝐴) and  𝜋−1(𝐵) are disjoint closed 

sets of E. Chose disjoint open sets U and V of E containing 𝜋−1(𝐴) and  𝜋−1(𝐵) respectively. It 

is tempting to assume that 𝜋(U) and 𝜋 𝑉  are open sets about A and B that we are seeking. But 
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they are not. For they need not be open (𝜋 is not necessarily an open map, and they need not be 

disjoint. 

So we proceed as follows. Let C = E-U and let D = E – V. Because C and D are closed 

sets of E, the sets 𝜋(𝐶)  and 𝜋(𝐷) are closed in X. Because C contains no point of 𝜋−1(A), the 

set 𝜋(𝐶) is disjoint from A. Then 𝑈0 = X - 𝜋(𝐶)  is an open set of X containing A. Similarly 

 𝑉0 = X - 𝜋(𝐷) is an open set of X containing B. Further more 𝑈0 and  𝑉0 are disjoint.  

For if x ∈ 𝑈0 then  𝜋−1(x) is disjoint from C, so that it is contained in U. Similarly if x ∈ 𝑉0 then  

𝜋−1(x) is disjoint from C, so that it is contained in V. Since U and V are disjoint so that 𝑈0 and  

𝑉0. 

Remark: Here note that the 2-fold dune cap is a space we have seen before, it is hoeomorphic to 

the projective plane 𝑃2. To verify this fact recall that 𝑃2was defined to be the quotient space 

obtained from 𝑆2 by identifying x with –x for each x. Let p: 𝑆2 → 𝑃2 be the quotient map. If we 

take standard homeomophism i of 𝐵2 with the upper hemisphere of 𝑆2, given by the equation 

 i(x,y) = ( x, y, (1 – 𝑥 2 − y2)
1

2) and follow it by the map p. Hence we get a map 𝜋: 𝐵2 → 𝑃2 that 

is continuous, closed and surjective. On intB it is injective and for each x∈ 𝑆1, it maps x and –x 

to the same point. Hence it induces a homeomorphism of the n-fold dunce cap is just what you 

might expect from our computation for 𝑃2. 

Theorem: The fundamental group of the n-fold dunce cap is a cyclic group of order n. 

Proof: Let h: 𝐵2 → 𝑋 be the quotient map, where X is the n-fold dunce cap. Set A = h(𝑆1). 

 Let p = (1,0) ∈  𝑆1 and a = h(p). Then h maps the arc C of 𝑆1 running from p to r(p) onto A; it 

identifies the end points of C but  is otherwise injective. Therefore A is homeomorphic  to a 

circle, so its fundamental group is infinite  cyclic. Indeed if 𝛾 is the path 

 𝛾(t) = (cos( 2𝜋𝑡/𝑛), sin(2𝜋𝑡/𝑛) in 𝑆1from p to r(p), then  𝛼 = ho𝛾 represents a generator of 

𝜋1(A,a).See  Fig 4 
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Figure 4 

 

Now the class of the loop 

 f = 𝛾 ∗ ( 𝑟𝑜𝛾 ∗ ((𝑟2o𝛾) ∗ ……∗ ( 𝑟𝑛−1oγ))) generates 𝜋1(𝑆1,p). Since h(𝑟𝑚(x)) = h(x) for all 

x and m, the loop hof equals the n-fold product 𝛼 ∗ (𝛼 ∗  … . .∗ 𝛼 ). Hence the proof. 
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